
Aerospace Toolbox
For Use with MATLAB®

Computation

Visualization

Programming

User’s Guide
Version 1

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Aerospace Toolbox User’s Guide

© COPYRIGHT 2006 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks, and SimBiology, SimEvents, and SimHydraulics are trademarks of
The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
September 2006 Online only New for Version 1.0 (Release 2006b)

Contents

Getting Started

1
What Is the Aerospace Toolbox? . 1-2

Related Products . 1-4

Getting Online Help . 1-5
Exploring the Toolbox . 1-5
Using the MATLAB Help System for Documentation and

Demos . 1-5

Using the Aerospace Toolbox

2
Defining Coordinate Systems . 2-2

Fundamental Coordinate System Concepts 2-2
Coordinate Systems for Modeling . 2-4
Coordinate Systems for Navigation 2-7
Coordinate Systems for Display . 2-10
References . 2-11

Defining Aerospace Units . 2-12

Importing Digital DATCOM Data . 2-14
Example of a USAF Digital DATCOM File 2-14
Importing Data from DATCOM Files 2-15
Examining Imported DATCOM Data 2-15
Filling in Missing DATCOM Data . 2-17
Plotting Aerodynamic Coefficients . 2-22

3-D Flight Data Playback . 2-26
Introducing the Flight Simulator Interface 2-26

iii

Working with the Flight Simulator Interface 2-30

Functions — By Category

3
Axes Transformations . 3-2

Environment . 3-3

File Reading . 3-3

FlightGear Animation . 3-3

Flight Parameters . 3-4

Quaternion Math . 3-4

Time . 3-5

Unit Conversion . 3-5

Functions — Alphabetical List

4

Index

iv Contents

1

Getting Started

What Is the Aerospace Toolbox?
(p. 1-2)

Overview of the product

Related Products (p. 1-4) Other products you need or might
want to use with the Aerospace
Toolbox

Getting Online Help (p. 1-5) How to explore the Aerospace
Toolbox and access online
documentation

1 Getting Started

What Is the Aerospace Toolbox?
The Aerospace Toolbox extends the MATLAB® technical computing
environment by providing reference standards, environment models, and
aerodynamic coefficient importing for performing advanced aerospace
analysis to develop and evaluate your designs. An interface to the FlightGear
flight simulator enables you to visualize flight data in a three-dimensional
environment and reconstruct behavioral anomalies in flight-test results.
To ensure design consistency, Aerospace Toolbox provides utilities for unit
conversions, coordinate transformations, and quaternion math, as well as
standards-based environmental models for the atmosphere, gravity, and
magnetic fields. You can import aerodynamic coefficients directly from the
U.S. Air Force Digital Data Compendium (DATCOM) to carry out preliminary
control design and vehicle performance analysis.

The toolbox provides you with the following main features:

• Provides standards-based environmental models for atmosphere, gravity,
and magnetic fields.

• Converts units and transforms coordinate systems and spatial
representations.

• Implements predefined utilities for aerospace parameter calculations, time
calculations, and quaternion math.

• Imports aerodynamic coefficients directly from DATCOM.

• Interfaces to the FlightGear flight simulator, enabling visualization of
vehicle dynamics in a three-dimensional environment.

The Aerospace Toolbox can be used in applications such as aircraft technology,
telemetry data reduction, flight control analysis, navigation analysis,
visualization for flight simulation, and environmental modeling, and can
help you perform the following tasks:

• Analyze, initialize, and visualize a broad range of large aerospace system
architectures, including aircraft, missiles, spacecraft (probes, satellites,
manned and unmanned), and propulsion systems (engines and rockets),
while reducing development time.

• Support and define new requirements for aerospace systems.

1-2

What Is the Aerospace Toolbox?

• Perform complex calculations and analyze data to optimize and implement
your designs.

• Test the performance of flight tests.

The Aerospace Toolbox maintains and updates the algorithms, tables, and
standard environmental models, eliminating the need to provide internal
maintenance and verification of the models and reducing the cost of internal
software maintenance.

1-3

1 Getting Started

Related Products
The Aerospace Toolbox requires MATLAB.

In addition to the Aerospace Toolbox, the Aerospace product family includes
the Aerospace Blockset. The Aerospace Toolbox provides static data analysis
capabilities, while the Aerospace Blockset provides an environment for
dynamic modeling and vehicle component modeling and simulation. The
Aerospace Blockset uses part of the functionality of the Aerospace Toolbox
as an engine. Use these products together to model aerospace systems in
MATLAB and Simulink®.

Other related products are listed in the Aerospace Toolbox product page at
the MathWorks Web site. They include toolboxes and blocksets that extend
the capabilities of MATLAB and Simulink. These products will enhance your
use of Aerospace Toolbox in various applications.

For more information about any MathWorks software products, see either

• The online documentation for that product if it is installed

• The MathWorks Web site at www.mathworks.com

1-4

http://www.mathworks.com/products/aerotb/
http://www.mathworks.com

Getting Online Help

Getting Online Help
You can get help online in a number of ways to assist you while you use the
Aerospace Toolbox.

Exploring the Toolbox
A list of the toolbox functions is available to you by typing

help aero

You can view the code for any function by typing

type function_name

Using the MATLAB Help System for Documentation
and Demos
The MATLAB Help browser allows you to access the documentation and demo
models for all the MATLAB and Simulink based products that you have
installed. The online Help includes an online index and search system.

Consult the Help for Using MATLAB section of the Using MATLAB
documentation for more information about the MATLAB Help system.

1-5

1 Getting Started

1-6

2

Using the Aerospace
Toolbox

Defining Coordinate Systems (p. 2-2) How to define coordinate systems
when working with the Aerospace
Toolbox

Defining Aerospace Units (p. 2-12) Units and unit conversion functions
available with the Aerospace Toolbox

Importing Digital DATCOM Data
(p. 2-14)

How to access flight data files using
the Aerospace Toolbox

3-D Flight Data Playback (p. 2-26) How to use the Aerospace Toolbox
to work with the Flight Simulator
Interface

2 Using the Aerospace Toolbox

Defining Coordinate Systems
Coordinate systems allow you to keep track of an aircraft or spacecraft’s
position and orientation in space. This section introduces important
terminology and the major coordinate systems used by the Aerospace Toolbox.

• “Fundamental Coordinate System Concepts” on page 2-2

• “Coordinate Systems for Modeling” on page 2-4

• “Coordinate Systems for Navigation” on page 2-7

• “Coordinate Systems for Display” on page 2-10

• “References” on page 2-11

Fundamental Coordinate System Concepts
The Aerospace Toolbox coordinate systems are based on these underlying
concepts from geodesy, astronomy, and physics.

Definitions
The Aerospace Toolbox uses right-handed (RH) Cartesian coordinate systems.
The right-hand rule establishes the x-y-z sequence of coordinate axes.

An inertial frame is a nonaccelerating motion reference frame. Loosely
speaking, acceleration is defined with respect to the distant cosmos. In an
inertial frame, Newton’s second law (force = mass X acceleration) holds.

Strictly defined, an inertial frame is a member of the set of all frames not
accelerating relative to one another. A noninertial frame is any frame
accelerating relative to an inertial frame. Its acceleration, in general, includes
both translational and rotational components, resulting in pseudoforces
(pseudogravity, as well as Coriolis and centrifugal forces).

The toolbox models the Earth’s shape (the geoid) as an oblate spheroid, a
special type of ellipsoid with two longer axes equal (defining the equatorial
plane) and a third, slightly shorter (geopolar) axis of symmetry. The equator
is the intersection of the equatorial plane and the Earth’s surface. The
geographic poles are the intersection of the Earth’s surface and the geopolar
axis. In general, the Earth’s geopolar and rotation axes are not identical.

2-2

Defining Coordinate Systems

Latitudes parallel the equator. Longitudes parallel the geopolar axis. The zero
longitude or prime meridian passes through Greenwich, England.

Approximations
The Aerospace Toolbox makes three standard approximations in defining
coordinate systems relative to the Earth.

• The Earth’s surface or geoid is an oblate spheroid, defined by its longer
equatorial and shorter geopolar axes. In reality, the Earth is slightly
deformed with respect to the standard geoid.

• The Earth’s rotation axis and equatorial plane are perpendicular, so that
the rotation and geopolar axes are identical. In reality, these axes are
slightly misaligned, and the equatorial plane wobbles as the Earth rotates.
This effect is negligible in most applications.

• The only noninertial effect in Earth-fixed coordinates is due to the Earth’s
rotation about its axis. This is a rotating, geocentric system. The toolbox
ignores the Earth’s motion around the Sun, the Sun’s motion in the Galaxy,
and the Galaxy’s motion through cosmos. In most applications, only the
Earth’s rotation matters.

This approximation must be changed for spacecraft sent into deep space,
i.e., outside the Earth-Moon system, and a heliocentric system is preferred.

Motion with Respect to Other Planets
The Aerospace Toolbox uses the standard WGS-84 geoid to model the Earth.
You can change the equatorial axis length, the flattening, and the rotation
rate.

You can represent the motion of spacecraft with respect to any celestial body
that is well approximated by an oblate spheroid by changing the spheroid
size, flattening, and rotation rate. If the celestial body is rotating westward
(retrogradely), make the rotation rate negative.

2-3

2 Using the Aerospace Toolbox

Coordinate Systems for Modeling
Modeling aircraft and spacecraft is simplest if you use a coordinate system
fixed in the body itself. In the case of aircraft, the forward direction is
modified by the presence of wind, and the craft’s motion through the air is
not the same as its motion relative to the ground.

Body Coordinates
The noninertial body coordinate system is fixed in both origin and orientation
to the moving craft. The craft is assumed to be rigid.

The orientation of the body coordinate axes is fixed in the shape of body.

• The x-axis points through the nose of the craft.

• The y-axis points to the right of the x-axis (facing in the pilot’s direction of
view), perpendicular to the x-axis.

• The z-axis points down through the bottom of the craft, perpendicular to
the x-y plane and satisfying the RH rule.

Translational Degrees of Freedom. Translations are defined by moving
along these axes by distances x, y, and z from the origin.

Rotational Degrees of Freedom. Rotations are defined by the Euler angles
P, Q, R or , , . They are

• P or : Roll about the x-axis

• Q or : Pitch about the y-axis

• R or : Yaw about the z-axis

2-4

Defining Coordinate Systems

Wind Coordinates
The noninertial wind coordinate system has its origin fixed in the rigid
aircraft. The coordinate system orientation is defined relative to the craft’s
velocity V.

The orientation of the wind coordinate axes is fixed by the velocity V.

• The x-axis points in the direction of V.

• The y-axis points to the right of the x-axis (facing in the direction of V),
perpendicular to the x-axis.

• The z-axis points perpendicular to the x-y plane in whatever way needed to
satisfy the RH rule with respect to the x- and y-axes.

Translational Degrees of Freedom. Translations are defined by moving
along these axes by distances x, y, and z from the origin.

2-5

2 Using the Aerospace Toolbox

Rotational Degrees of Freedom. Rotations are defined by the Euler
angles , γ, χ. They are

• : Bank angle about the x-axis

• γ: Flight path about the y-axis

• χ: Heading angle about the z-axis

2-6

Defining Coordinate Systems

Coordinate Systems for Navigation
Modeling aerospace trajectories requires positioning and orienting the aircraft
or spacecraft with respect to the rotating Earth. Navigation coordinates are
defined with respect to the center and surface of the Earth.

Geocentric and Geodetic Latitudes
The geocentric latitude λ on the Earth’s surface is defined by the angle
subtended by the radius vector from the Earth’s center to the surface point
with the equatorial plane.

The geodetic latitude μ on the Earth’s surface is defined by the angle
subtended by the surface normal vector n and the equatorial plane.

2-7

2 Using the Aerospace Toolbox

NED Coordinates
The north-east-down (NED) system is a noninertial system with its origin
fixed at the aircraft or spacecraft’s center of gravity. Its axes are oriented
along the geodetic directions defined by the Earth’s surface.

• The x-axis points north parallel to the geoid surface, in the polar direction.

• The y-axis points east parallel to the geoid surface, along a latitude curve.

• The z-axis points downward, toward the Earth’s surface, antiparallel to the
surface’s outward normal n.

Flying at a constant altitude means flying at a constant z above the Earth’s
surface.

2-8

Defining Coordinate Systems

ECI Coordinates
The Earth-centered inertial (ECI) system is a mixed inertial system. It is
oriented with respect to the Sun. Its origin is fixed at the center of the Earth.

• The z-axis points northward along the Earth’s rotation axis.

• The x-axis points outward in the Earth’s equatorial plane exactly at the
Sun. (This rule ignores the Sun’s oblique angle to the equator, which varies
with season. The actual Sun always remains in the x-z plane.)

• The y-axis points into the eastward quadrant, perpendicular to the x-z
plane so as to satisfy the RH rule.

Earth-Centered Coordinates

2-9

2 Using the Aerospace Toolbox

ECEF Coordinates
The Earth-center, Earth-fixed (ECEF) system is a noninertial system that
rotates with the Earth. Its origin is fixed at the center of the Earth.

• The z-axis points northward along the Earth’s rotation axis.

• The x-axis points outward along the intersection of the Earth’s equatorial
plane and prime meridian.

• The y-axis points into the eastward quadrant, perpendicular to the x-z
plane so as to satisfy the RH rule.

Coordinate Systems for Display
Aerospace Toolbox lets you use FlightGear coordinates for rendering motion.

FlightGear is an open-source, third-party flight simulator with an interface
supported by Aerospace Toolbox.

• “Working with the Flight Simulator Interface” on page 2-30 discusses the
toolbox interface to FlightGear.

• See the FlightGear documentation at www.flightgear.org for complete
information about this flight simulator.

The FlightGear coordinates form a special body-fixed system, rotated from the
standard body coordinate system about the y-axis by -180 degrees:

• The x-axis is positive toward the back of the vehicle.

• The y-axis is positive toward the right of the vehicle.

• The z-axis is positive upward, e.g., wheels typically have the lowest z
values.

2-10

http://www.flightgear.org

Defining Coordinate Systems

References
Recommended Practice for Atmospheric and Space Flight Vehicle Coordinate
Systems, R-004-1992, ANSI/AIAA, February 1992.

Mapping Toolbox User’s Guide, The MathWorks, Inc., Natick, Massachusetts.
www.mathworks.com/access/helpdesk/help/toolbox/map/.

Rogers, R. M., Applied Mathematics in Integrated Navigation Systems, AIAA,
Reston, Virginia, 2000.

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, 2nd ed.,
Wiley-Interscience, New York, 2003.

Thomson, W. T., Introduction to Space Dynamics, John Wiley & Sons, New
York, 1961/Dover Publications, Mineola, New York, 1986.

World Geodetic System 1984 (WGS 84),
http://earth-info.nga.mil/GandG/wgs84.

2-11

http://www.mathworks.com/access/helpdesk/help/toolbox/map/
http://earth-info.nga.mil/GandG/wgs84

2 Using the Aerospace Toolbox

Defining Aerospace Units
The Aerospace Toolbox functions support standard measurement systems.
The Unit Conversion functions provide means for converting common
measurement units from one system to another, such as converting velocity
from feet per second to meters per second and vice versa.

The unit conversion functions support all units listed in this table.

Quantity MKS (SI) English

Acceleration meters/second2 (m/s2),
kilometers/second2

(km/s2),
(kilometers/hour)/second
(km/h-s), g-unit (g)

inches/second2 (in/s2),
feet/second2 (ft/s2),
(miles/hour)/second
(mph/s), g-unit (g)

Angle radian (rad), degree
(deg), revolution

radian (rad), degree
(deg), revolution

Angular acceleration radians/second2 (rad/s2),
degrees/second2 (deg/s2),
revolutions/minute
(rpm),
revolutions/second (rps)

radians/second2 (rad/s2),
degrees/second2 (deg/s2),
revolutions/minute
(rpm), revolutions/second
(rps)

Angular velocity radians/second (rad/s),
degrees/second (deg/s),
revolutions/minute
(rpm)

radians/second (rad/s),
degrees/second (deg/s),
revolutions/minute (rpm)

Density kilogram/meter3 (kg/m3) pound mass/foot3

(lbm/ft3), slug/foot3

(slug/ft3), pound
mass/inch3 (lbm/in3)

Force newton (N) pound (lb)

Inertia kilogram-meter2 (kg-m2) slug-foot2 (slug-ft2)

Length meter (m) inch (in), foot (ft), mile
(mi), nautical mile (nm)

2-12

Defining Aerospace Units

Quantity MKS (SI) English

Mass kilogram (kg) slug (slug), pound mass
(lbm)

Pressure pascal (Pa) pound/inch2 (psi),
pound/foot2 (psf),
atmosphere (atm)

Temperature kelvin (K), degrees
Celsius (oC)

degrees Fahrenheit (oF),
degrees Rankine (oR)

Torque newton-meter (N-m) pound-feet (lb-ft)

Velocity meters/second (m/s),
kilometers/second
(km/s), kilometers/hour
(km/h)

inches/second (in/sec),
feet/second (ft/sec),
feet/minute (ft/min),
miles/hour (mph), knots

2-13

2 Using the Aerospace Toolbox

Importing Digital DATCOM Data
The Aerospace Toolbox enables bringing United States Air Force (USAF)
Digital DATCOM files into MATLAB by using the datcomimport function.
For more information, see the datcomimport function reference page. This
section explains how to import data from a USAF Digital DATCOM file.

• “Example of a USAF Digital DATCOM File” on page 2-14

• “Importing Data from DATCOM Files” on page 2-15

• “Examining Imported DATCOM Data” on page 2-15

• “Filling in Missing DATCOM Data” on page 2-17

• “Plotting Aerodynamic Coefficients” on page 2-22

The example used in this section is available as an Aerospace Toolbox demo.
You can run the demo either by entering astimportddatcom in the MATLAB
Command Window or by finding the demo entry (Importing from USAF
Digital DATCOM Files) in the Demos browser and clicking Run in the
Command Window on its demo page.

Example of a USAF Digital DATCOM File
The following is a sample input file for USAF Digital DATCOM for a
wing-body-horizontal tail-vertical tail configuration running over five alphas,
two Mach numbers, and two altitudes and calculating static and dynamic
derivatives. You can also view this file by entering type astdatcom.in in the
MATLAB Command Window.

$FLTCON NMACH=2.0,MACH(1)=0.1,0.2$

$FLTCON NALT=2.0,ALT(1)=5000.0,8000.0$

$FLTCON NALPHA=5.,ALSCHD(1)=-2.0,0.0,2.0,

ALSCHD(4)=4.0,8.0,LOOP=2.0$

$OPTINS SREF=225.8,CBARR=5.75,BLREF=41.15$

$SYNTHS XCG=7.08,ZCG=0.0,XW=6.1,ZW=-1.4,ALIW=1.1,XH=20.2,

ZH=0.4,ALIH=0.0,XV=21.3,ZV=0.0,VERTUP=.TRUE.$

$BODY NX=10.0,

X(1)=-4.9,0.0,3.0,6.1,9.1,13.3,20.2,23.5,25.9,

R(1)=0.0,1.0,1.75,2.6,2.6,2.6,2.0,1.0,0.0$

$WGPLNF CHRDTP=4.0,SSPNE=18.7,SSPN=20.6,CHRDR=7.2,SAVSI=0.0,CHSTAT=0.25,

2-14

Importing Digital DATCOM Data

TWISTA=-1.1,SSPNDD=0.0,DHDADI=3.0,DHDADO=3.0,TYPE=1.0$

NACA-W-6-64A412

$HTPLNF CHRDTP=2.3,SSPNE=5.7,SSPN=6.625,CHRDR=0.25,SAVSI=11.0,

CHSTAT=1.0,TWISTA=0.0,TYPE=1.0$

NACA-H-4-0012

$VTPLNF CHRDTP=2.7,SSPNE=5.0,SSPN=5.2,CHRDR=5.3,SAVSI=31.3,

CHSTAT=0.25,TWISTA=0.0,TYPE=1.0$

NACA-V-4-0012

CASEID SKYHOGG BODY-WING-HORIZONTAL TAIL-VERTICAL TAIL CONFIG

DAMP

NEXT CASE

The output file generated by USAF Digital DATCOM for the same
wing-body-horizontal tail-vertical tail configuration running over five alphas,
two Mach numbers, and two altitudes can be viewed by entering type
astdatcom.out in the MATLAB Command Window.

Importing Data from DATCOM Files
Use the datcomimport function to bring the Digital DATCOM data into
MATLAB.

alldata = datcomimport('astdatcom.out', true, 0);

Examining Imported DATCOM Data
The datcomimport function creates a cell array of structures containing the
data from the Digital DATCOM output file.

data = alldata{1}

data =

case: 'SKYHOGG BODY-WING-HORIZONTAL TAIL-VERTICAL TAIL CONFIG'

mach: [0.1000 0.2000]

alt: [5000 8000]

alpha: [-2 0 2 4 8]

nmach: 2

nalt: 2

nalpha: 5

rnnub: []

hypers: 0

2-15

2 Using the Aerospace Toolbox

loop: 2

sref: 225.8000

cbar: 5.7500

blref: 41.1500

dim: 'ft'

deriv: 'deg'

stmach: 0.6000

tsmach: 1.4000

save: 0

stype: []

trim: 0

damp: 1

build: 1

part: 0

highsym: 0

highasy: 0

highcon: 0

tjet: 0

hypeff: 0

lb: 0

pwr: 0

grnd: 0

wsspn: 18.7000

hsspn: 5.7000

ndelta: 0

delta: []

deltal: []

deltar: []

ngh: 0

grndht: []

config: [1x1 struct]

cd: [5x2x2 double]

cl: [5x2x2 double]

cm: [5x2x2 double]

cn: [5x2x2 double]

ca: [5x2x2 double]

xcp: [5x2x2 double]

cla: [5x2x2 double]

cma: [5x2x2 double]

cyb: [5x2x2 double]

2-16

Importing Digital DATCOM Data

cnb: [5x2x2 double]

clb: [5x2x2 double]

qqinf: [5x2x2 double]

eps: [5x2x2 double]

depsdalp: [5x2x2 double]

clq: [5x2x2 double]

cmq: [5x2x2 double]

clad: [5x2x2 double]

cmad: [5x2x2 double]

clp: [5x2x2 double]

cyp: [5x2x2 double]

cnp: [5x2x2 double]

cnr: [5x2x2 double]

clr: [5x2x2 double]

Filling in Missing DATCOM Data
By default, missing data points are set to 99999 and data points are set to
NaN where no DATCOM methods exist or where the method is not applicable.

It can be seen in the Digital DATCOM output file and examining the imported

data that CYβ , Cnβ , Clq , and Cmq have data only in the first alpha value.
Here are the imported data values.

data.cyb

ans(:,:,1) =

1.0e+004 *

-0.0000 -0.0000

9.9999 9.9999

9.9999 9.9999

9.9999 9.9999

9.9999 9.9999

ans(:,:,2) =

1.0e+004 *

2-17

2 Using the Aerospace Toolbox

-0.0000 -0.0000

9.9999 9.9999

9.9999 9.9999

9.9999 9.9999

9.9999 9.9999

data.cnb

ans(:,:,1) =

1.0e+004 *

0.0000 0.0000

9.9999 9.9999

9.9999 9.9999

9.9999 9.9999

9.9999 9.9999

ans(:,:,2) =

1.0e+004 *

0.0000 0.0000

9.9999 9.9999

9.9999 9.9999

9.9999 9.9999

9.9999 9.9999

data.clq

ans(:,:,1) =

1.0e+004 *

0.0000 0.0000

9.9999 9.9999

9.9999 9.9999

9.9999 9.9999

9.9999 9.9999

2-18

Importing Digital DATCOM Data

ans(:,:,2) =

1.0e+004 *

0.0000 0.0000

9.9999 9.9999

9.9999 9.9999

9.9999 9.9999

9.9999 9.9999

data.cmq

ans(:,:,1) =

1.0e+004 *

-0.0000 -0.0000

9.9999 9.9999

9.9999 9.9999

9.9999 9.9999

9.9999 9.9999

ans(:,:,2) =

1.0e+004 *

-0.0000 -0.0000

9.9999 9.9999

9.9999 9.9999

9.9999 9.9999

9.9999 9.9999

The missing data points will be filled with the values for the first alpha, since
these data points are meant to be used for all alpha values.

aerotab = {'cyb' 'cnb' 'clq' 'cmq'};

for k = 1:length(aerotab)

for m = 1:data.nmach

for h = 1:data.nalt

2-19

2 Using the Aerospace Toolbox

data.(aerotab{k})(:,m,h) = data.(aerotab{k})(1,m,h);

end

end

end

Here are the updated imported data values.

data.cyb

ans(:,:,1) =

-0.0035 -0.0035

-0.0035 -0.0035

-0.0035 -0.0035

-0.0035 -0.0035

-0.0035 -0.0035

ans(:,:,2) =

-0.0035 -0.0035

-0.0035 -0.0035

-0.0035 -0.0035

-0.0035 -0.0035

-0.0035 -0.0035

data.cnb

ans(:,:,1) =

1.0e-003 *

0.9142 0.8781

0.9142 0.8781

0.9142 0.8781

0.9142 0.8781

0.9142 0.8781

ans(:,:,2) =

1.0e-003 *

2-20

Importing Digital DATCOM Data

0.9190 0.8829

0.9190 0.8829

0.9190 0.8829

0.9190 0.8829

0.9190 0.8829

data.clq

ans(:,:,1) =

0.0974 0.0984

0.0974 0.0984

0.0974 0.0984

0.0974 0.0984

0.0974 0.0984

ans(:,:,2) =

0.0974 0.0984

0.0974 0.0984

0.0974 0.0984

0.0974 0.0984

0.0974 0.0984

data.cmq

ans(:,:,1) =

-0.0892 -0.0899

-0.0892 -0.0899

-0.0892 -0.0899

-0.0892 -0.0899

-0.0892 -0.0899

ans(:,:,2) =

-0.0892 -0.0899

-0.0892 -0.0899

-0.0892 -0.0899

2-21

2 Using the Aerospace Toolbox

-0.0892 -0.0899

-0.0892 -0.0899

Plotting Aerodynamic Coefficients
You can now plot the aerodynamic coefficients:

• “Plotting Lift Curve Moments” on page 2-22

• “Plotting Drag Polar Moments” on page 2-23

• “Plotting Pitching Moments” on page 2-24

Plotting Lift Curve Moments

h1 = figure;

figtitle = {'Lift Curve' ''};

for k=1:2

subplot(2,1,k)

plot(data.alpha,permute(data.cl(:,k,:),[1 3 2]))

grid

ylabel(['Lift Coefficient (Mach =' num2str(data.mach(k)) ')'])

title(figtitle{k});

end

xlabel('Angle of Attack (deg)')

2-22

Importing Digital DATCOM Data

Plotting Drag Polar Moments

h2 = figure;

figtitle = {'Drag Polar' ''};

for k=1:2

subplot(2,1,k)

plot(permute(data.cd(:,k,:),[1 3 2]),permute(data.cl(:,k,:),[1 3 2]))

grid

ylabel(['Lift Coefficient (Mach =' num2str(data.mach(k)) ')'])

title(figtitle{k})

end

xlabel('Drag Coefficient')

2-23

2 Using the Aerospace Toolbox

Plotting Pitching Moments

h3 = figure;

figtitle = {'Pitching Moment' ''};

for k=1:2

subplot(2,1,k)

plot(permute(data.cm(:,k,:),[1 3 2]),permute(data.cl(:,k,:),[1 3 2]))

grid

ylabel(['Lift Coefficient (Mach =' num2str(data.mach(k)) ')'])

title(figtitle{k})

end

xlabel('Pitching Moment Coefficient')

2-24

Importing Digital DATCOM Data

2-25

2 Using the Aerospace Toolbox

3-D Flight Data Playback
The Aerospace Toolbox provides an interface to the FlightGear flight
simulator, which enables you to visualize flight data in a three-dimensional
environment. This section explains how to obtain and install the third-party
FlightGear flight simulator. It then explains how to play back 3-D flight
data by using a FlightGear demo, provided with the Aerospace Toolbox, as
an example.

• “Introducing the Flight Simulator Interface” on page 2-26

• “Working with the Flight Simulator Interface” on page 2-30

Introducing the Flight Simulator Interface
The Aerospace Toolbox supports an interface to the third-party FlightGear
flight simulator, an open source software package available through a GNU
General Public License (GPL).

• “About the FlightGear Interface” on page 2-26

• “Obtaining FlightGear” on page 2-27

• “Configuring Your Computer for FlightGear” on page 2-27

• “Installing and Starting FlightGear” on page 2-30

About the FlightGear Interface
The FlightGear flight simulator interface included with Aerospace Toolbox
is a unidirectional transmission link from MATLAB to FlightGear using
FlightGear’s published net_fdm binary data exchange protocol. Data is
transmitted via UDP network packets to a running instance of FlightGear.
Aerospace Toolbox supports multiple standard binary distributions of
FlightGear. See “Working with the Flight Simulator Interface” on page 2-30
for interface details.

FlightGear is a separate software entity neither created, owned, nor
maintained by The MathWorks.

• To report bugs in or request enhancements to the Aerospace Toolbox
FlightGear interface, contact the MathWorks Technical Support at
http://www.mathworks.com/contact_TS.html.

2-26

http://www.mathworks.com/contact_TS.html

3-D Flight Data Playback

• To report bugs or request enhancements to FlightGear itself, visit
www.flightgear.org and use the contact page.

Obtaining FlightGear
You can obtain FlightGear from www.flightgear.org in the download area
or by ordering CDs from FlightGear. The download area contains extensive
documentation for installation and configuration. Because FlightGear is an
open source project, source downloads are also available for customization
and porting to custom environments.

Configuring Your Computer for FlightGear
You must have a high performance graphics card with stable drivers to use
FlightGear. For more information, see the FlightGear CD distribution or
the hardware requirements and documentation areas of the FlightGear Web
site, www.flightgear.org.

MathWorks tests of FlightGear’s performance and stability indicate significant
sensitivity to computer video cards, driver versions, and driver settings. You
need OpenGL support with hardware acceleration activated. The OpenGL
settings are particularly important. Without proper setup, performance can
drop from about a 30 frames-per-second (fps) update rate to less than 1 fps.

Graphics Recommendations for Windows. The MathWorks recommends
the following for Windows users:

• Choose a graphics card with good OpenGL performance.

• Always use the latest tested and stable driver release for your video card.
Test the driver thoroughly on a few computers before deploying to others.

For Microsoft Windows 2000 or XP systems running on x86 (32-bit) or
AMD-64/EM64T chip architectures, the graphics card operates in the
unprotected kernel space known as Ring Zero. This means that glitches
in the driver can cause Windows to lock or crash. Before buying a large
number of computers for 3-D applications, test, with your vendor, one
or two computers to find a combination of hardware, operating system,
drivers, and settings that are stable for your applications.

2-27

http://www.flightgear.org
http://www.flightgear.org
http://www.flightgear.org

2 Using the Aerospace Toolbox

Setting Up OpenGL Graphics on Windows. For complete information
on OpenGL settings, refer to the documentation at the OpenGL Web site,
www.opengl.org.

Follow these steps to optimize your video card settings. Your driver’s panes
might look different.

1 Ensure that you have activated the OpenGL hardware acceleration on
your video card. On Windows, access this configuration through Start >
Settings > Control Panel > Display, which opens the following dialog
box. Select the Settings tab.

2 Click the Advanced button in the lower right of the dialog box, which
opens the graphics card’s custom configuration dialog box, and go to the
OpenGL tab. For an ATI Mobility Radeon 9000 video card, the OpenGL
pane looks like this:

2-28

http://www.opengl.org/

3-D Flight Data Playback

3 For best performance, move the Main Settings slider near the top of the
dialog box to the Performance end of the slider.

4 If stability is a problem, try other screen resolutions, other color depths in
the Displays pane, and other OpenGL acceleration modes.

Many cards perform much better at 16 bits-per-pixel color depth (also known
as 65536 color mode, 16-bit color). For example, on an ATI Mobility Radeon
9000 running a given model, 30 fps are achieved in 16-bit color mode, while 2
fps are achieved in 32-bit color mode.

Setup on Linux, Macintosh, and Other Platforms. FlightGear
distributions are available for Linux, Macintosh, and other UNIX platforms
from the FlightGear Web site, www.flightgear.org. Installation on these
platforms, like Windows, requires careful configuration of graphics cards and
drivers. Consult the documentation and hardware requirements sections
at the FlightGear Web site.

2-29

http://www.flightgear.org

2 Using the Aerospace Toolbox

Using MATLAB Graphics Controls to Configure Your OpenGL Settings.
You can also control your OpenGL rendering from the MATLAB command
line with the MATLAB Graphics opengl command. Consult the opengl
command reference for more information.

Installing and Starting FlightGear
The extensive FlightGear documentation guides you through the installation
in detail. Consult the documentation section of the FlightGear Web site for
complete installation instructions: www.flightgear.org.

Keep the following points in mind:

• Generous central processor speed, system and video RAM, and virtual
memory are essential for good flight simulator performance.

The MathWorks recommends a minimum of 512 megabytes of system RAM
and 128 megabytes of video RAM for reasonable performance.

• Be sure to have sufficient disk space for the FlightGear download and
installation.

• The MathWorks recommends configuring your computer’s graphics card
before you install FlightGear. See the preceding section, “Configuring Your
Computer for FlightGear” on page 2-27.

• Shutting down all running applications (including MATLAB) before
installing FlightGear is recommended.

• MathWorks tests indicate that the operational stability of FlightGear is
especially sensitive during startup. It is best to not move, resize, mouse
over, overlap, or cover up the FlightGear window until the initial simulation
scene appears after the startup splash screen fades out.

• The current releases of FlightGear are optimized for flight visualization at
altitudes below 100,000 feet. FlightGear does not work well or at all with
very high altitude and orbital views.

Working with the Flight Simulator Interface
The Aerospace Toolbox provides a demo named Displaying Flight Trajectory
Data, which shows you how you can visualize flight trajectories with
FlightGear Animation object. The demo is intended to be modified depending
on the particulars of your FlightGear installation. This section explains how

2-30

http://www.flightgear.org

3-D Flight Data Playback

to run this demo. Use this demo as an example to play back your own 3-D
flight data with FlightGear.

You need to have FlightGear installed and configured before attempting to
simulate this model. See “Introducing the Flight Simulator Interface” on
page 2-26.

To run the demo:

1 Import the aircraft geometry into FlightGear.

2 Run the demo. The demo performs the following steps:

a Loads recorded trajectory data

b Creates a time series object from trajectory data

c Creates a FlightGearAnimation object

3 Modify the animation object properties, if needed.

4 Create a run script for launching FlightGear flight simulator.

5 Start FlightGear flight simulator.

6 Play back the flight trajectory.

Importing the Aircraft Geometry into FlightGear
Before running the demo, copy the aircraft geometry model into FlightGear:

1 Go to your installed FlightGear directory. Open the data directory, then the
Aircraft directory: FlightGear\data\Aircraft\.

2 You may already have an HL20 subdirectory there, if you have previously
run the Aerospace Blockset NASA HL-20 with FlightGear Interface demo.
In this case, you don’t have to do anything, because the geometry model
is the same.

Otherwise, copy the HL20 folder from the
matlabroot\toolbox\aero\aerodemos\ directory to the
FlightGear\data\Aircraft\ directory. This folder contains the
preconfigured geometries for the HL-20 simulation and HL20-set.xml.

2-31

2 Using the Aerospace Toolbox

The file matlabroot\toolbox\aero\aerodemos\HL20\models\HL20.xml
defines the geometry.

Running the Demo

1 Start MATLAB.

2 Run the demo either by entering astfganim in the MATLAB Command
Window or by finding the demo entry (Displaying Flight Trajectory Data)
in the Demos browser and clicking Run in the Command Window on its
demo page.

While running, the demo performs several steps by issuing a series of
commands, as explained below.

Loading Recorded Flight Trajectory Data. The flight trajectory data for
this example is stored in a comma separated value formatted file. Using
csvread, the data is read from the file starting at row 1 and column 0, which
skips the header information.

tdata = csvread('asthl20log.csv',1,0);

Creating a Time Series Object from Trajectory Data. The time series
object, ts, is created from the latitude, longitude, altitude, and Euler angle
data along with the time array in tdata using the MATLAB timeseries
command. Latitude, longitude, and Euler angles are also converted from
degrees to radians using the convang function.

ts = timeseries([convang(tdata(:,[3 2]),'deg','rad') ...
tdata(:,4) convang(tdata(:,5:7),'deg','rad')],tdata(:,1));

Creating a FlightGearAnimation Object. This series of commands creates
a FlightGearAnimation object and sets its properties for data playback:

1 Opening a FlightGearAnimation object.

h = fganimation;

2 Setting FlightGearAnimation object properties for the time series.

h.TimeseriesSourceType = 'Timeseries';

2-32

3-D Flight Data Playback

h.TimeseriesSource = ts;

3 Setting FlightGearAnimation object properties relating to FlightGear.
These properties include the path to the installation directory, the version
number, the aircraft geometry model, and network information for the
FlightGear flight simulator.

h.FlightGearBaseDirectory = 'D:\Applications\FlightGear0910';
h.FlightGearVersion = '0.9.10';
h.GeometryModelName = 'HL20';
h.DestinationIpAddress = '127.0.0.1';
h.DestinationPort = '5502';

4 Setting the initial conditions (location and orientation) for the FlightGear
flight simulator.

h.AirportId = 'KSFO';
h.RunwayId = '10L';
h.InitialAltitude = 7224;
h.InitialHeading = 113;
h.OffsetDistance = 4.72;
h.OffsetAzimuth = 0;

5 Setting the seconds of animation data per second of wall-clock time.

h.TimeScaling = 5;

6 Checking the FlightGearAnimation object properties and their values.

get(h)

At this point, the demo stops running and returns the FlightGearAnimation
object, h:

TimeseriesSource: [196x1 timeseries]
TimeseriesSourceType: 'Timeseries'

TimeseriesReadFcn: @TimeseriesRead
TimeScaling: 5

FramesPerSecond: 12
FlightGearVersion: '0.9.10'

OutputFileName: 'runfg.bat'
FlightGearBaseDirectory: 'D:\Applications\FlightGear0910'

2-33

2 Using the Aerospace Toolbox

GeometryModelName: 'HL20'
DestinationIpAddress: '127.0.0.1'

DestinationPort: '5502'
AirportId: 'KSFO'
RunwayId: '10L'

InitialAltitude: 7224
InitialHeading: 113
OffsetDistance: 4.7200
OffsetAzimuth: 0

Modifying the FlightGearAnimation Object Properties
Modify the FlightGearAnimation object properties as needed. If your
FlightGear installation directory is other than that in the demo (for example,
FlightGear), modify the FlightGearBaseDirectory property by issuing
the following command:

h.FlightGearBaseDirectory = 'D:\Applications\FlightGear';

Similarly, if you want to use a particular file name for the run script, modify
the OutputFileName property.

Before proceeding to the next step, verify the FlightGearAnimation object
properties:

get(h)

Generating the Run Script
To start FlightGear with the desired initial conditions (location, date, time,
weather, operating modes), it is best to create a run script by using the
GenerateRunScript command:

GenerateRunScript(h)

By default, GenerateRunScript saves the run script as a text file
named runfg.bat. You can specify a different name by modifying the
OutputFileName property of the FlightGearAnimation object, as described
in the previous step.

2-34

3-D Flight Data Playback

This file does not need to be generated each time the data is viewed, only
when the desired initial conditions or FlightGear information changes.

Starting the FlightGear Flight Simulator
To start FlightGear from the MATLAB command prompt, use the system
command to execute the run script. Provide the name of the output file
created by GenerateRunScript as the argument:

system('runfg.bat &');

FlightGear starts in a separate window.

Tip With the FlightGear window in focus, press the V key to alternate
between the different aircraft views: cockpit view, helicopter view, chase
view, and so on.

Playing Back the Flight Trajectory
Once FlightGear is running, the FlightGearAnimation object can start to
communicate with FlightGear. To animate the flight trajectory data, use
the play command:

play(h)

The following illustration shows a snapshot of flight data playback in tower
view without yaw.

2-35

2 Using the Aerospace Toolbox

2-36

3

Functions — By Category

Axes Transformations (p. 3-2) Transform axes of coordinate
systems to different types, such as
Euler angles to quaternions and vice
versa

Environment (p. 3-3) Simulate various aspects of aircraft
environment, such as atmosphere
conditions, gravity, magnetic fields,
and wind

File Reading (p. 3-3) Read standard aerodynamic file
formats into MATLAB

FlightGear Animation (p. 3-3) Visualize flight data using
FlightGear flight simulator

Flight Parameters (p. 3-4) Various flight parameters, including
ideal airspeed correction, Mach
number, and dynamic pressure

Quaternion Math (p. 3-4) Common mathematical and
matrix operations, including
quaternion multiplication, division,
normalization, and rotating vector
by quaternion

Time (p. 3-5) Time calculations, including Julian
dates, decimal year, and leap year

Unit Conversion (p. 3-5) Convert common measurement units
from one system to another, such as
converting acceleration from feet per
second to meters per second and vice
versa

3 Functions — By Category

Axes Transformations
angle2dcm Create direction cosine matrix from

rotation angles

dcm2alphabeta Convert direction cosine matrix to
angle of attack and sideslip angle

dcm2angle Create rotation angles from direction
cosine matrix

dcm2latlon Convert direction cosine matrix to
geodetic latitude and longitude

dcm2quat Convert direction cosine matrix to
quaternion

dcmbody2wind Convert angle of attack and sideslip
angle to direction cosine matrix

dcmecef2ned Convert geodetic latitude and
longitude to direction cosine matrix

ecef2lla Convert Earth-centered Earth-fixed
(ECEF) coordinates to geodetic
coordinates

euler2quat Convert Euler angles to quaternion

geoc2geod Convert geocentric latitude to
geodetic latitude

geod2geoc Convert geodetic latitude to
geocentric latitude

lla2ecef Convert geodetic coordinates to
Earth-centered Earth-fixed (ECEF)
coordinates

quat2dcm Convert quaternion to direction
cosine matrix

quat2euler Convert quaternion to Euler angles

3-2

Environment

Environment
atmoscoesa Use 1976 COESA model

atmosisa Use International Standard
Atmosphere model

atmoslapse Use Lapse Rate Atmosphere model

atmosnonstd Use climatic data from MIL-STD-210
or MIL-HDBK-310

atmospalt Calculate pressure altitude based on
ambient pressure

gravitywgs84 Implement 1984 World Geodetic
System (WGS84) representation of
Earth’s gravity

wrldmagm Use World Magnetic Model

File Reading
datcomimport Bring USAF Digital DATCOM file

into MATLAB

FlightGear Animation
fganimation Construct FlightGear animation

object

GenerateRunScript Generate run script for FlightGear
flight simulator

play Animate FlightGear flight simulator
using given position/angle timeseries

3-3

3 Functions — By Category

Flight Parameters
airspeed Compute airspeed from velocity

alphabeta Compute incidence and sideslip
angles

correctairspeed Calculate equivalent airspeed (EAS),
calibrated airspeed (CAS), or true
airspeed (TAS) from one of other two
airspeeds

dpressure Compute dynamic pressure using
velocity and density

geocradius Estimate radius of ellipsoid planet
at geocentric latitude

machnumber Compute Mach number using
velocity and speed of sound

rrdelta Compute relative pressure ratio

rrsigma Compute relative density ratio

rrtheta Compute relative temperature ratio

Quaternion Math
quatconj Calculate conjugate of quaternion

quatdivide Divide quaternion by another
quaternion

quatinv Calculate inverse of quaternion

quatmod Calculate modulus of quaternion

quatmultiply Calculate product of two quaternions

quatnorm Calculate norm of quaternion

quatnormalize Normalize quaternion

quatrotate Rotate vector by quaternion

3-4

Time

Time
decyear Calculate decimal year

juliandate Calculate Julian date

leapyear Determine leap year

mjuliandate Calculate modified Julian date

Unit Conversion
convacc Convert from acceleration units to

desired acceleration units

convang Convert from angle units to desired
angle units

convangacc Convert from angular acceleration
units to desired angular acceleration
units

convangvel Convert from angular velocity units
to desired angular velocity units

convdensity Convert from density units to desired
density units

convforce Convert from force units to desired
force units

convlength Convert from length units to desired
length units

convmass Convert from mass units to desired
mass units

convpres Convert from pressure units to
desired pressure units

3-5

3 Functions — By Category

convtemp Convert from temperature units to
desired temperature units

convvel Convert from velocity units to
desired velocity units

3-6

4

Functions — Alphabetical
List

airspeed

Purpose Compute airspeed from velocity

Syntax as = airspeed(v)

Description as = airspeed(v) computes m airspeeds, as, from an m-by-3 array of
velocities, v.

Examples Determine the airspeed for velocity in feet per second:

as = airspeed([84.3905 33.7562 10.1269])

as =

91.4538

Determine the airspeed for velocity in knots:

as = airspeed([50 20 6; 5 0.5 2])

as =

54.1849
5.4083

See Also alphabeta, correctairspeed, dpressure, machnumber

4-2

alphabeta

Purpose Compute incidence and sideslip angles

Syntax [a b] = alphabeta(v)

Description [a b] = alphabeta(v) computes m incidence and sideslip angles, a
and b, between the velocity vector and the body. v is an m-by-3 array of
velocities in body-axes. a and b are in radians.

Examples Determine the incidence and sideslip angles for velocity in feet per
second:

[alpha beta] = alphabeta([84.3905 33.7562 10.1269])

alpha =

0.1194

beta =

0.3780

Determine the incidence and sideslip angles for velocity in knots:

[alpha beta] = alphabeta([50 20 6; 5 0.5 2])

alpha =

0.1194
0.3805

beta =

0.3780
0.0926

4-3

alphabeta

See Also airspeed, machnumber

4-4

angle2dcm

Purpose Create direction cosine matrix from rotation angles

Syntax n = angle2dcm(r1, r2, r3)
n = angle2dcm(r1, r2, r3, s)

Description n = angle2dcm(r1, r2, r3) calculates the direction cosine matrix,
n, for a given set of rotation angles, r1, r2, r3. r1 is an m array of first
rotation angles. r2 is an m array of second rotation angles. r3 is an m
array of third rotation angles. n returns a 3-by-3-by-m matrix containing
m direction cosine matrices. Rotation angles are input in radians.

n = angle2dcm(r1, r2, r3, s) calculates the direction cosine matrix,
n, for a given set of rotation angles, r1, r2, r3, and a specified rotation
sequence, s.

The default rotation sequence is 'ZYX', where r1 is z-axis rotation, r2
is y-axis rotation, and r3 is x-axis rotation.

Supported rotation sequence strings are 'ZYX', 'ZYZ', 'ZXY', 'ZXZ',
'YXZ', 'YXY', 'YZX', 'YZY', 'XYZ', 'XYX', 'XZY', and 'XZX'.

Examples Determine the direction cosine matrix from rotation angles:

yaw = 0.7854;
pitch = 0.1;
roll = 0;
dcm = angle2dcm(yaw, pitch, roll)

dcm =

0.7036 0.7036 -0.0998
-0.7071 0.7071 0
0.0706 0.0706 0.9950

Determine the direction cosine matrix from multiple rotation angles:

yaw = [0.7854 0.5];
pitch = [0.1 0.3];
roll = [0 0.1];

4-5

angle2dcm

dcm = angle2dcm(pitch, roll, yaw, 'YXZ')

dcm(:,:,1) =

0.7036 0.7071 -0.0706
-0.7036 0.7071 0.0706
0.0998 0 0.9950

dcm(:,:,2) =

0.8525 0.4770 -0.2136
-0.4321 0.8732 0.2254
0.2940 -0.0998 0.9506

See Also angle2dcm, dcm2angle, dcm2quat, quat2dcm, quat2euler

4-6

atmoscoesa

Purpose Use 1976 COESA model

Syntax [T, a, P, rho] = atmoscoesa(h, action)

Description [T, a, P, rho] = atmoscoesa(h, action) implements the
mathematical representation of the 1976 Committee on Extension
to the Standard Atmosphere (COESA) United States standard lower
atmospheric values for absolute temperature, pressure, density, and
speed of sound for the input geopotential altitude.

Inputs for atmoscoesa are:

h An array of m geopotential heights, in
meters

action A string to determine action
for out-of-range input. Specify
if out-of-range input invokes a
'Warning', 'Error', or no action
('None'). The default is 'Warning'.

Outputs calculated for the COESA model are:

T An array of m temperatures, in kelvin

a An array of m speeds of sound, in
meters per second

P An array of m air pressures, in pascal

rho An array of m air densities, in
kilograms per meter cubed

Examples Calculate the COESA model at 1000 meters with warnings for
out-of-range inputs:

[T, a, P, rho] = atmoscoesa(1000)

4-7

atmoscoesa

T =

281.6500

a =

336.4341

P =

8.9875e+004

rho =

1.1116

Calculate the COESA model at 1000, 11,000, and 20,000 meters with
errors for out-of-range inputs:

[T, a, P, rho] = atmoscoesa([1000 11000 20000], 'Error')

T =

281.6500 216.6500 216.6500

a =

336.4341 295.0696 295.0696

P =

4-8

atmoscoesa

1.0e+004 *

8.9875 2.2632 0.5475

rho =

1.1116 0.3639 0.0880

Assumptions
and
Limitations

Below the geopotential altitude of 0 m (0 feet) and above the geopotential
altitude of 84,852 m (approximately 278,386 feet), temperature
values are extrapolated linearly and pressure values are extrapolated
logarithmically. Density and speed of sound are calculated using a
perfect gas relationship.

References U.S. Standard Atmosphere, 1976, U.S. Government Printing Office,
Washington, D.C.

See Also atmosisa, atmoslapse, atmosnonstd, atmospalt

4-9

atmosisa

Purpose Use International Standard Atmosphere model

Syntax [T, a, P, rho] = atmosisa(h)

Description [T, a, P, rho] = atmosisa(h) implements the mathematical
representation of the International Standard Atmosphere values for
ambient temperature, pressure, density, and speed of sound for the
input geopotential altitude.

Input required by atmosisa is:

h An array of m geopotential heights, in meters

Outputs calculated for the International Standard Atmosphere are:

T An array of m temperatures, in kelvin

a An array of m speeds of sound, in meters per
second

P An array of m air pressures, in pascal

rho An array of m air densities, in kilograms per
meter cubed

Examples Calculate the International Standard Atmosphere at 1000 meters:

[T, a, P, rho] = atmosisa(1000)

T =

281.6500

a =

336.4341

4-10

atmosisa

P =

8.9875e+004

rho =

1.1116

Calculate the International Standard Atmosphere at 1000, 11,000, and
20,000 meters:

[T, a, P, rho] = atmosisa([1000 11000 20000])

T =

281.6500 216.6500 216.6500

a =

336.4341 295.0696 295.0696

P =

1.0e+004 *

8.9875 2.2632 0.5475

rho =

1.1116 0.3639 0.0880

4-11

atmosisa

Assumptions
and
Limitations

Below the geopotential altitude of 0 km and above the geopotential
altitude of the tropopause, temperature and pressure values are
held. Density and speed of sound are calculated using a perfect gas
relationship.

References U.S. Standard Atmosphere, 1976, U.S. Government Printing Office,
Washington, D.C.

See Also atmoscoesa, atmoslapse, atmosnonstd, atmospalt

4-12

atmoslapse

Purpose Use Lapse Rate Atmosphere model

Syntax [T, a, P, rho] = atmoslapse(h, g, gamma, r, l, hts, htp, rho0,
p0, t0)

Description [T, a, P, rho] = atmoslapse(h, g, gamma, r, l, hts, htp,
rho0, p0, t0) implements the mathematical representation of the
lapse rate atmospheric equations for ambient temperature, pressure,
density, and speed of sound for the input geopotential altitude. This
atmospheric model is customizable by specifying the atmospheric
properties in the function input.

Inputs required by atmoslapse are:

h An array of m geopotential heights, in meters

g A scalar of acceleration due to gravity, in meters
per second squared

gamma A scalar of specific heat ratio

r A scalar of characteristic gas constant, in joule
per kilogram-kelvin

l A scalar of lapse rate, in kelvin per meter

hts A scalar of height of troposphere, in meters

htp A scalar of height of tropopause, in meters

rho0 A scalar of air density at mean sea level, in
kilograms per meter cubed

p0 A scalar of static pressure at mean sea level,
in pascal

t0 A scalar of absolute temperature at mean sea
level, in kelvin

Outputs calculated for the lapse rate atmosphere are:

4-13

atmoslapse

T An array of m temperatures, in kelvin

a An array of m speeds of sound, in meters per
second

P An array of m air pressures, in pascal

rho An array of m air densities, in kilograms per
meter cubed

Examples Calculate the atmosphere at 1000 meters with the International
Standard Atmosphere input values:

[T, a, P, rho] = atmoslapse(1000, 9.80665, 1.4, 287.0531, 0.0065, ...

11000, 20000, 1.225, 101325, 288.15)

T =

281.6500

a =

336.4341

P =

8.9875e+004

rho =

1.1116

4-14

atmoslapse

Assumptions
and
Limitations

Below the geopotential altitude of 0 km and above the geopotential
altitude of the tropopause, temperature and pressure values are
held. Density and speed of sound are calculated using a perfect gas
relationship.

References U.S. Standard Atmosphere, 1976, U.S. Government Printing Office,
Washington, D.C.

See Also atmoscoesa, atmosisa, atmosnonstd, atmospalt

4-15

atmosnonstd

Purpose Use climatic data from MIL-STD-210 or MIL-HDBK-310

Syntax [T, a, P, rho] = atmosnonstd(h, atype, extreme, freq, extalt,
action, spec)

Description [T, a, P, rho] = atmosnonstd(h, atype, extreme, freq,
extalt, action, spec) implements a portion of the climatic data
of the MIL-STD-210C or MIL-HDBK-310 worldwide air environment
to 80 km geometric (or approximately 262,000 feet geometric) for
absolute temperature, pressure, density, and speed of sound for the
input geopotential altitude.

Inputs for atmosnonstd are:

h An array of m geopotential heights, in meters

atype A string selecting the representation of
'Profile' or 'Envelope' for the atmospheric
data. 'Profile' is the realistic atmospheric
profiles associated with extremes at specified
altitudes. 'Profile' is recommended for
simulation of vehicles vertically traversing the
atmosphere, or when the total influence of
the atmosphere is needed. 'Envelope' uses
extreme atmospheric values at each altitude.
'Envelope' is recommended for vehicles
traversing the atmosphere horizontally, without
much change in altitude.

extreme A string selecting the atmospheric parameter
which is the extreme value. Atmospheric
parameters that can be specified are 'High
temperature', 'Low temperature', 'High
density', 'Low density', 'High pressure'
and 'Low pressure'. 'High pressure' and
'Low pressure' are available only when atype
is 'Envelope'.

4-16

atmosnonstd

freq A string selecting percent of time the extreme
values would occur. Valid values for freq
include 'Extreme values', '1%', '5%',
'10%’, and '20%'. 'Extreme values', '5%',
and '20%' are available only when atype is
'Envelope'. When using atype of 'Envelope'
and freq of '5%', '10%’, and '20%', only the
extreme parameter selected (temperature,
density, or pressure) has a valid output. All
other parameter outputs are zero.

extalt A scalar value, in kilometers, selecting
geometric altitude at which the extreme values
occur. extalt applies only when atype is
'Profile'. Valid values for extalt include 5
(16404 ft), 10 (32808 ft), 20 (65617 ft), 30 (98425
ft), and 40 (131234 ft).

action A string to determine action for out-of-range
input. Specify if out-of-range input invokes a
'Warning', 'Error', or no action ('None'). The
default is 'Warning'.

spec A string specifying the atmosphere model,
MIL-STD-210C or MIL-HDBK-310: '210c' or
'310'. The default is '310'.

Outputs calculated for the lapse rate atmosphere are:

T An array of m temperatures, in kelvin

a An array of m speeds of sound, in meters per
second

P An array of m air pressures, in pascal

rho An array of m air densities, in kilograms per
meter cubed

4-17

atmosnonstd

Examples Calculate the nonstandard atmosphere profile with high density
occurring 1% of the time at 5 kilometers from MIL-HDBK-310 at 1000
meters with warnings for out-of-range inputs:

[T, a, P, rho] = atmosnonstd(1000,'Profile','High density','1%',5)

T =

248.1455

a =

315.7900

P =

8.9893e+004

rho =

1.2620

Calculate the nonstandard atmosphere envelope with high pressure
occurring 20% of the time from MIL-STD-210C at 1000, 11,000, and
20,000 meters with errors for out-of-range inputs:

[T, a, P, rho] = atmosnonstd([1000 11000 20000],'Envelope', ...

'High pressure','20%','Error','210c')

T =

0 0 0

4-18

atmosnonstd

a =

0 0 0

P =

1.0e+004 *

9.1598 2.5309 0.6129

rho =

0 0 0

Assumptions
and
Limitations

All values are held below the geometric altitude of 0 m (0 feet) and above
the geometric altitude of 80,000 meters (approximately 262,000 feet).
The envelope atmospheric model has a few exceptions where values are
held below the geometric altitude of 1 kilometer (approximately 3281
feet) and above the geometric altitude of 30,000 meters (approximately
98,425 feet). These exceptions are due to lack of data in MIL-STD-210
or MIL-HDBK-310 for these conditions.

In general, temperature values are interpolated linearly and density
values are interpolated logarithmically. Pressure and speed of sound are
calculated using a perfect gas relationship. The envelope atmospheric
model has a few exceptions where the extreme value is the only
value provided as an output. Pressure in these cases is interpolated
logarithmically. These envelope atmospheric model exceptions apply to
all cases of high and low pressure, high and low temperature, and high
and low density, excluding the extreme values and 1% frequency of
occurrence. These exceptions are due to lack of data in MIL-STD-210 or
MIL-HDBK-310 for these conditions.

4-19

atmosnonstd

A limitation is that climatic data for the region south of 60 degrees
S latitude is excluded from consideration in MIL-STD-210 or
MIL-HDBK-310.

This function uses the metric version of data from the MIL-STD-210 or
MIL-HDBK-310 specifications. A limitation of this is some inconsistent
data between the metric and English data. Locations where these
inconsistencies occur are within the envelope data for low density, low
temperature, high temperature, low pressure, and high pressure. The
most noticeable differences occur in the following values:

• For low density envelope data with 5% frequency, the density values
in metric units are inconsistent at 4 km and 18 km and the density
values in English units are inconsistent at 14 km.

• For low density envelope data with 10% frequency, the density values
in metric units are inconsistent at 18 km and the density values in
English units are inconsistent at 14 km.

• For low density envelope data with 20% frequency, the density values
in English units are inconsistent at 14 km.

• For high pressure envelope data with 10% frequency, the pressure
values at 8 km are inconsistent.

References Global Climatic Data for Developing Military Products (MIL-STD-210C),
9 January 1987, Department of Defense, Washington, D.C.

Global Climatic Data for Developing Military Products
(MIL-HDBK-310), 23 June 1997, Department of Defense, Washington,
D.C.

See Also atmoscoesa, atmosisa, atmoslapse, atmospalt

4-20

atmospalt

Purpose Calculate pressure altitude based on ambient pressure

Syntax h = atmospalt(p, action)

Description h = atmospalt(p, action)computes the pressure altitude based on
ambient pressure. Pressure altitude is the altitude with specified
ambient pressure in the 1976 Committee on Extension to the Standard
Atmosphere (COESA) United States standard. Pressure altitude is also
known as the mean sea level (MSL) altitude.

Inputs for atmospalt are:

P An array of m ambient pressures, in pascal

action A string to determine action for out-of-range
input. Specify if out-of-range input invokes a
'Warning', 'Error', or no action ('None'). The
default is 'Warning'.

Output is:

h An array of m pressure altitudes or MSL
altitudes, in meters

Examples Calculate the pressure altitude at a static pressure of 101,325 Pa with
warnings for out-of-range inputs:

h = atmospalt(101325)

h =

0

Calculate the pressure altitude at static pressures of 101,325 and
26,436 Pa with errors for out-of-range inputs:

4-21

atmospalt

h = atmospalt([101325 26436], 'Error')

h =

1.0e+004 *

0 1.0000

Assumptions
and
Limitations

Below the pressure of 0.3961 Pa (approximately 0.00006 psi) and above
the pressure of 101,325 Pa (approximately 14.7 psi), altitude values are
extrapolated logarithmically. Air is assumed to be dry and an ideal gas.

References U.S. Standard Atmosphere, 1976, U.S. Government Printing Office,
Washington, D.C.

See Also atmoscoesa

4-22

convacc

Purpose Convert from acceleration units to desired acceleration units

Syntax a = convacc(v, ui, uo)

Description a = convacc(v, ui, uo) computes the conversion factor from
specified input acceleration units, ui, to specified output acceleration
units, uo, and applies the conversion factor to the input, v, to produce
the output, a, in the desired units. v and a are floating-point arrays of
size m-by-n. All of the values in v must have the same unit conversions
from ui to uo. ui and uo are strings.

Supported unit strings are:

'ft/s^2' Feet per second squared

'm/s^2' Meters per second squared

'km/s^2' Kilometers per second squared

'in/s^2' Inches per second squared

'km/h-s' Kilometers per hour per second

'mph/s' Miles per hour per second

'G''s' g-units

Examples Convert three accelerations from feet per second squared to meters
per second squared:

a = convacc([3 10 20],'ft/s^2','m/s^2')

a =

0.9144 3.0480 6.0960

See Also convang, convangacc, convangvel, convdensity, convforce,
convlength, convmass, convpres, convtemp, convvel

4-23

convang

Purpose Convert from angle units to desired angle units

Syntax a = convang(v, ui, uo)

Description a = convang(v, ui, uo) computes the conversion factor from
specified input angle units, ui, to specified output angle units, uo, and
applies the conversion factor to the input, v, to produce the output, a,
in the desired units. v and a are floating-point arrays of size m-by-n.
All of the values in v must have the same unit conversions from ui to
uo. ui and uo are strings.

Supported unit strings are:

'deg' Degrees

'rad' Radians

'rev' Revolutions

Examples Convert three angles from degrees to radians:

a = convang([3 10 20],'deg','rad')

a =

0.0524 0.1745 0.3491

See Also convacc, convangacc, convangvel, convdensity, convforce,
convlength, convmass, convpres, convtemp, convvel

4-24

convangacc

Purpose Convert from angular acceleration units to desired angular acceleration
units

Syntax a = convangacc(v, ui, uo)

Description a = convangacc(v, ui, uo) computes the conversion factor from
specified input angular acceleration units, ui, to specified output
angular acceleration units, uo, and applies the conversion factor to the
input, v, to produce the output, a, in the desired units. v and a are
floating-point arrays of size m-by-n. All of the values in v must have the
same unit conversions from ui to uo. ui and uo are strings.

Supported unit strings are:

'deg/s^2' Degrees per second squared

'rad/s^2' Radians per second squared

'rpm/s' Revolutions per minute per second

Examples Convert three angular accelerations from degrees per second squared to
radians per second squared:

a = convangacc([0.3 0.1 0.5],'deg/s^2','rad/s^2')

a =

0.0052 0.0017 0.0087

See Also convacc, convang, convangvel, convdensity, convforce, convlength,
convmass, convpres, convtemp, convvel

4-25

convangvel

Purpose Convert from angular velocity units to desired angular velocity units

Syntax a = convangvel(v, ui, uo)

Description a = convangvel(v, ui, uo) computes the conversion factor from
specified input angular velocity units, ui, to specified output angular
velocity units, uo, and applies the conversion factor to the input, v, to
produce the output, a, in the desired units. v and a are floating-point
arrays of size m-by-n. All of the values in v must have the same unit
conversions from ui to uo. ui and uo are strings.

Supported unit strings are:

'deg/s' Degrees per second

'rad/s' Radians per second

'rpm' Revolutions per minute

Examples Convert three angular velocities from degrees per second to radians
per second:

a = convangvel([0.3 0.1 0.5],'deg/s','rad/s')

a =

0.0052 0.0017 0.0087

See Also convacc, convang, convangacc, convdensity, convforce, convlength,
convmass, convpres, convtemp, convvel

4-26

convdensity

Purpose Convert from density units to desired density units

Syntax a = convdensity(v, ui, uo)

Description a = convdensity(v, ui, uo) computes the conversion factor from
specified input density units, ui, to specified output density units, uo,
and applies the conversion factor to the input, v, to produce the output,
a, in the desired units. v and a are floating-point arrays of size m-by-n.
All of the values in v must have the same unit conversions from ui to
uo. ui and uo are strings.

Supported unit strings are:

'lbm/ft^3' Pound mass per feet cubed

'kg/m^3' Kilograms per meters cubed

'slug/ft^3' Slugs per feet cubed

'lbm/in^3' Pound mass per inch cubed

Examples Convert three densities from pound mass per feet cubed to kilograms
per meters cubed:

a = convdensity([0.3 0.1 0.5],'lbm/ft^3','kg/m^3')

a =

4.8055 1.6018 8.0092

See Also convacc, convang, convangacc, convangvel, convforce, convlength,
convmass, convpres, convtemp, convvel

4-27

convforce

Purpose Convert from force units to desired force units

Syntax a = convforce(v, ui, uo)

Description a = convforce(v, ui, uo) computes the conversion factor from
specified input force units, ui, to specified output force units, uo, and
applies the conversion factor to the input, v, to produce the output, a,
in the desired units. v and a are floating-point arrays of size m-by-n.
All of the values in v must have the same unit conversions from ui to
uo. ui and uo are strings.

Supported unit strings are:

'lbf' Pound force

'N' Newton

Examples Convert three forces from pound force to newtons:

a = convforce([120 1 5],'lbf','N')

a =

533.7866 4.4482 22.2411

See Also convacc, convang, convangacc, convangvel, convdensity,
convlength, convmass, convpres, convtemp, convvel

4-28

convlength

Purpose Convert from length units to desired length units

Syntax a = convlength(v, ui, uo)

Description a = convlength(v, ui, uo) computes the conversion factor from
specified input length units, ui, to specified output length units, uo, and
applies the conversion factor to the input, v, to produce the output, a,
in the desired units. v and a are floating-point arrays of size m-by-n.
All of the values in v must have the same unit conversions from ui to
uo. ui and uo are strings.

Supported unit strings are:

'ft' Feet

'm' Meters

'km' Kilometers

'in' Inches

'mi' Miles

'naut mi' Nautical miles

Examples Convert three lengths from feet to meters:

a = convlength([3 10 20],'ft','m')

a =

0.9144 3.0480 6.0960

See Also convacc, convang, convangacc, convangvel, convdensity, convforce,
convmass, convpres, convtemp, convvel

4-29

convmass

Purpose Convert from mass units to desired mass units

Syntax a = convmass(v, ui, uo)

Description a = convmass(v, ui, uo) computes the conversion factor from
specified input mass units, ui, to specified output mass units, uo, and
applies the conversion factor to the input, v, to produce the output, a,
in the desired units. v and a are floating-point arrays of size m-by-n.
All of the values in v must have the same unit conversions from ui to
uo. ui and uo are strings.

Supported unit strings are:

'lbm' Pound mass

'kg' Kilograms

'slugs' Slugs

Examples Convert three masses from pound mass to kilograms:

a = convmass([3 1 5],'lbm','kg')

a =

1.3608 0.4536 2.2680

See Also convacc, convang, convangacc, convangvel, convdensity, convforce,
convlength, convpres, convtemp, convvel

4-30

convpres

Purpose Convert from pressure units to desired pressure units

Syntax a = convpres(v, ui, uo)

Description a = convpres(v, ui, uo) computes the conversion factor from
specified input pressure units, ui, to specified output pressure units,
uo, and applies the conversion factor to the input, v, to produce the
output, a, in the desired units. v and a are floating-point arrays of size
m-by-n. All of the values in v must have the same unit conversions from
ui to uo. ui and uo are strings.

Supported unit strings are:

'psi' Pound force per square inch

'Pa' Pascal

'psf' Ppound force per square foot

'atm' Atmosphere

Examples Convert two pressures from pound force per square inch to atmospheres:

a = convpres([14.696 35],'psi','atm')

a =

1.0000 2.3816

See Also convacc, convang, convangacc, convangvel, convdensity, convforce,
convlength, convmass, convtemp, convvel

4-31

convtemp

Purpose Convert from temperature units to desired temperature units

Syntax a = convtemp(v, ui, uo)

Description a = convtemp(v, ui, uo) computes the conversion factor from
specified input temperature units, ui, to specified output temperature
units, uo, and applies the conversion factor to the input, v, to produce
the output, a, in the desired units. v and a are floating-point arrays of
size m-by-n. All of the values in v must have the same unit conversions
from ui to uo. ui and uo are strings.

Supported unit strings are:

'K' Kelvin

'F' Degrees Fahrenheit

'C' Degrees Celsius

'R' Degrees Rankine

Examples Convert three temperatures from degrees Celsius to degrees Fahrenheit:

a = convtemp([0 100 15],'C','F')

a =

32.0000 212.0000 59.0000

See Also convacc, convang, convangacc, convangvel, convdensity, convforce,
convlength, convmass, convpres, convvel

4-32

convvel

Purpose Convert from velocity units to desired velocity units

Syntax a = convvel(v, ui, uo)

Description a = convvel(v, ui, uo) computes the conversion factor from
specified input velocity units, ui, to specified output velocity units, uo,
and applies the conversion factor to the input, v, to produce the output,
a, in the desired units. v and a are floating-point arrays of size m-by-n.
All of the values in v must have the same unit conversions from ui to
uo. ui and uo are strings.

Supported unit strings are:

'ft/s' Feet per second

'm/s' Meters per second

'km/s' Kilometers per second

'in/s' Inches per second

'km/h' Kilometers per hour

'mph' Miles per hour

'kts' Knots

'ft/min' Feet per minute

Examples Convert three velocities from feet per minute to meters per second:

a = convvel([30 100 250],'ft/min','m/s')

a =

0.1524 0.5080 1.2700

See Also convacc, convang, convangacc, convangvel, convdensity, convforce,
convlength, convmass, convpres, convtemp

4-33

correctairspeed

Purpose Calculate equivalent airspeed (EAS), calibrated airspeed (CAS), or true
airspeed (TAS) from one of other two airspeeds

Syntax as = correctairspeed(v, a, p0, ai, ao)

Description as = correctairspeed(v, a, p0, ai, ao) computes the conversion
factor from specified input airspeed, ai, to specified output airspeed,
ao, using speed of sound, a, and static pressure p0. The conversion
factor is applied to the input airspeed, v, to produce the output, as, in
the desired airspeed. v, as, a, and p0 are floating-point arrays of size
m. All of the values in v must have the same airspeed conversions from
ai to ao. ai and ao are strings.

Input required by correctairspeed is:

v Airspeed in meters per second

a Speed of sound in meters per second

p0 Static air pressure in pascal

ai Input airspeed string

ao Output airspeed string

Supported airspeed strings are:

'TAS' True airspeed

'CAS' Calibrated airspeed

'EAS' Equivalent airspeed

Output, as, is calculated as airspeed in meters per second.

Examples Convert three airspeeds from true airspeed to equivalent airspeed at
1000 meters:

as = correctairspeed([25.7222; 10.2889; 3.0867], 336.4, 89874.6,'TAS','EAS')

as =

4-34

correctairspeed

24.5057

9.8023

2.9407

Convert airspeeds from true airspeed to equivalent airspeed at 1000
and 0 meters:

ain = [25.7222; 10.2889; 3.0867];
sos = [336.4; 340.3; 340.3];
P0 = [89874.6; 101325; 101325];
as = correctairspeed(ain, sos, P0,'TAS','EAS')

as =

24.5057
10.2887
3.0866

Assumptions
and
Limitations

Based on assumption of compressible, isentropic (subsonic flow), dry air
with constant specific heat ratio (gamma).

References Lowry, J.T., Performance of Light Aircraft, AIAA Education Series,
Washington, D.C., 1999

Aeronautical Vestpocket Handbook, United Technologies Pratt &
Whitney, August, 1986

See Also airspeed

4-35

datcomimport

Purpose Bring USAF Digital DATCOM file into MATLAB

Syntax aero = datcomimport(file)
aero = datcomimport(file, usenan)
aero = datcomimport(file, usenan, verbose)

Description aero = datcomimport(file) takes a filename as a string, or a cell
array of filenames as strings, file, and imports aerodynamic data from
file into a cell array of structures, aero. Prior to reading DATCOM
file, values are initialized to 99999, in order to show when there is not a
full set of data for the DATCOM case.

aero = datcomimport(file, usenan) is an alternate method allowing
using NaN or zero to replace data points where no DATCOM methods
exist or where the method is not applicable. The default value for
usenan is true.

aero = datcomimport(file, usenan, verbose) is an alternate
method allowing additional specification of how the status of the
DATCOM file being read is displayed. The default value for verbose
is 2, which displays a wait bar. Other options are 0, which displays
no information, and 1, which displays text to the MATLAB Command
window.

The fields of aero are dependent on the data within the DATCOM file.
Common fields are the following:

case A string containing the caseid. The default
value is [].

mach An array of Mach numbers. The default value
is [].

alt An array of altitudes. The default value is [].

alpha An array of angles of attack. The default value
is [].

nmach The number of Mach numbers. The default
value is 0.

4-36

datcomimport

nalt The number of altitudes. The default value is 0.

nalpha The number of angles of attack. The default
value is 0.

rnnub An array of Reynolds numbers. The default
value is [].

hypers A logical denoting, when true, that mach
numbers above tsmach are hypersonic. The
default value is false and those values are
supersonic.

loop A scalar denoting the type of looping done to
generate the DATCOM file. When loop is 1,
mach and alt are varied together. When loop
is 2, mach varies while alt is fixed. Altitude is
then updated and Mach numbers are cycled
through again. When loop is 3, mach is fixed
while alt varies. mach is then updated and
altitudes are cycled through again. The default
value is 1.

sref A scalar denoting the reference area for the
case. The default value is [].

cbar A scalar denoting the longitudinal reference
length. The default value is [].

blref A scalar denoting the lateral reference length.
The default value is [].

dim A string denoting the specified system of units
for the case. The default value is 'ft'.

deriv A string denoting the specified angle units for
the case. The default value is 'deg'.

stmach A scalar value setting the upper limit of
subsonic Mach numbers. The default value is
0.6.

4-37

datcomimport

tsmach A scalar value setting the lower limit of
supersonic Mach numbers. The default value
is 1.4.

save A logical denoting whether the input values for
this case are used in the next case. The default
value is false.

stype A scalar denoting the type of asymmetric flap
for the case. The default value is [].

trim A logical denoting the reading of trim data for
the case. When trim runs are read, this value is
set to true. The default value is false.

damp A logical denoting the reading of dynamic
derivative data for the case. When dynamic
derivative runs are read, this value is set to
true. The default value is false.

build A scalar denoting the reading of build data for
the case. When build runs are read, this value
is set to 10. The default value is 1.

part A logical denoting the reading of partial data
for the case. When partial runs were written
for each Mach number, this value is set to true.
The default value is false.

highsym A logical denoting the reading of symmetric flap
high lift data for the case. When symmetric flap
runs are read, this value is set to true. The
default value is false.

highasy A logical denoting the reading of asymmetric
flap high lift data for the case. When
asymmetric flap runs are read, this value is set
to true. The default value is false.

4-38

datcomimport

highcon A logical denoting the reading of control/trim
tab high lift data for the case. When control/trim
tab runs are read, this value is set to true. The
default value is false.

tjet A logical denoting the reading of transverse-jet
control data for the case. When transverse-jet
control runs are read, this value is set to true.
The default value is false.

hypeff A logical denoting the reading of hypersonic
flap effectiveness data for the case. When
hypersonic flap effectiveness runs are read, this
value is set to true. The default value is false.

lb A logical denoting the reading of low aspect
ratio wing or lifting body data for the case.
When low aspect ratio wing or lifting body runs
are read, this value is set to true. The default
value is false.

pwr A logical denoting the reading of power effects
data for the case. When power effects runs
are read, this value is set to true. The default
value is false.

grnd A logical denoting the reading of ground effects
data for the case. When ground effects runs
are read, this value is set to true. The default
value is false.

wsspn A scalar denoting the semi-span theoretical
panel for wing. This value is used to determine
if the configuration contains a canard. The
default value is 1.

hsspn A scalar denoting the semi-span theoretical
panel for horizontal tail. This value is used
to determine if the configuration contains a
canard. The default value is 1.

4-39

datcomimport

ndelta The number of control surface deflections:
delta, deltal, or deltar. The default value
is 0.

delta An array of control-surface streamwise
deflection angles. The default value is [].

deltal An array of left lifting surface streamwise
control deflection angles. The default value
is [] and is defined positive for trailing-edge
down.

deltar An array of right lifting surface streamwise
control deflection angles. The default value
is [] and is defined positive for trailing-edge
down.

ngh A scalar denoting the number of ground
altitudes. The default value is 0.

grndht An array of ground heights. The default value
is [].

config A logical denoting whether the case contains
horizontal tails. The default value is false.

Static longitude and lateral stability fields available are:

cd A matrix of drag coefficients. These coefficients
are a function of alpha, mach, alt, build,
grndht, and delta and are defined positive for
an aft acting load.

cl A matrix of lift coefficients. These coefficients
are a function of alpha, mach, alt, build,
grndht, and delta and are defined positive for
an up acting load.

cm A matrix of pitching-moment coefficients. These
coefficients are a function of alpha, mach, alt,
build, grndht, and delta and are defined
positive for a nose-up rotation.

4-40

datcomimport

cn A matrix of normal-force coefficients. These
coefficients are a function of alpha, mach, alt,
build, grndht, and delta and are defined
positive for a normal force in the +Z direction.

ca A matrix of axial-force coefficients. These
coefficients are a function of alpha, mach, alt,
build, grndht, and delta and are defined
positive for a normal force in the +X direction.

xcp A matrix of distances between moment
reference center and the center of pressure
divided by the longitudinal reference length.
These distances are a function of alpha, mach,
alt, build, grndht, and delta and are defined
positive for a location forward of the center of
gravity.

cla A matrix of derivatives of lift coefficients with
respect to alpha. These derivatives are a
function of alpha, mach, alt, build, grndht,
and delta.

cma A matrix of derivatives of pitching-moment
coefficients with respect to alpha. These
derivatives are a function of alpha, mach, alt,
build, grndht, and delta.

cyb A matrix of derivatives of side-force coefficients
with respect to sideslip angle. These derivatives
are a function of alpha, mach, alt, build,
grndht, and delta.

cnb A matrix of derivatives of yawing-moment
coefficients with respect to sideslip angle. These
derivatives are a function of alpha, mach, alt,
build, grndht, and delta.

4-41

datcomimport

clb A matrix of derivatives of rolling-moment
coefficients with respect to sideslip angle. These
derivatives are a function of alpha, mach, alt,
build, grndht, and delta.

qqinf A matrix of ratios of dynamic pressure at the
horizontal tail to the freestream value. These
ratios are a function of alpha, mach, alt, build,
grndht, and delta.

eps A matrix of downwash angle at horizontal
tail in degrees. These angles are a function of
alpha, mach, alt, build, grndht, and delta.

depsdalp A matrix of downwash angle with respect to
angle of attack. These angles are a function of
alpha, mach, alt, build, grndht, and delta.

Dynamic derivative fields are:

clq A matrix of rolling-moment derivatives due to
pitch rate. These derivatives are a function of
alpha, mach, alt, and build.

cmq A matrix of pitching moment derivatives due to
pitch rate. These derivatives are a function of
alpha, mach, alt, and build.

clad A matrix of lift force derivatives due to rate of
angle of attack. These derivatives are a function
of alpha, mach, alt, and build.

cmad A matrix of pitching moment derivatives due to
rate of angle of attack. These derivatives are a
function of alpha, mach, alt, and build.

clp A matrix of rolling moment derivatives due to
roll rate. These derivatives are a function of
alpha, mach, alt, and build.

4-42

datcomimport

cyp A matrix of lateral force derivatives due to roll
rate. These derivatives are a function of alpha,
mach, alt, and build.

cnp A matrix of yawing moment derivatives due to
roll rate. These derivatives are a function of
alpha, mach, alt, and build.

cnr A matrix of yawing moment derivatives due to
yaw rate. These derivatives are a function of
alpha, mach, alt, and build.

clr A matrix of rolling moment derivatives due to
yaw rate. These derivatives are a function of
alpha, mach, alt, and build.

High lift and control fields for symmetric flaps are:

dcl_sym A matrix of incremental lift coefficients
due to deflection of control surface, valid in
the linear-lift angle of attack range. These
coefficients are a function of delta, mach, and
alt.

dcm_sym A matrix of incremental pitching-moment
coefficients due to deflection of control surface,
valid in the linear-lift angle of attack range.
These coefficients are a function of delta, mach,
and alt.

dclmax_sym A matrix of incremental maximum lift
coefficients. These coefficients are a function of
delta, mach, and alt.

dcdmin_sym A matrix of incremental minimum drag
coefficients due to control or flap deflection.
These coefficients are a function of delta, mach,
and alt.

4-43

datcomimport

clad_sym A matrix of the lift-curve slope of the deflected,
translated surface. These coefficients are a
function of delta, mach, and alt.

cha_sym A matrix of control-surface hinge-moment
derivatives due to angle of attack. These
derivatives are a function of delta, mach, and
alt and, when defined positive, will tend to
rotate the flap trailing edge down.

chd_sym A matrix of control-surface hinge-moment
derivatives due to control deflection. These
derivatives are a function of delta, mach, and
alt and, when defined positive, will tend to
rotate the flap trailing edge down.

dcdi_sym A matrix of incremental induced drag
coefficients due to flap detection. These
coefficients are a function of alpha, delta,
mach, and alt.

High lift and control fields available for asymmetric flaps are:

xsc A matrix of streamwise distances from wing
leading edge to spoiler tip. These distances are
a function of delta, mach, and alt.

hsc A matrix of projected height of spoiler measured
from normal to airfoil meanline. These
distances are a function of delta, mach, and
alt.

ddc A matrix of projected height of deflector for
spoiler-slot-deflector control. These distances
are a function of delta, mach, and alt.

dsc A matrix of projected height of spoiler control.
These distances are a function of delta, mach,
and alt.

4-44

datcomimport

clroll A matrix of incremental rolling moment
coefficients due to asymmetrical deflection
of control surface. These coefficients are a
function of delta, mach, and alt, or a function
of alpha, delta, mach, and alt for differential
horizontal stabilizer, and are defined positive
when right wing is down.

cn_asy A matrix of incremental yawing moment
coefficients due to asymmetrical deflection
of control surface. These coefficients are a
function of delta, mach, and alt, or a function
of alpha, delta, mach, and alt for plain flaps,
and are defined positive when nose is right.

High lift and control fields available for control/trim tabs are:

fc_con A matrix of stick forces or stick force coefficients.
These forces or coefficients are a function of
alpha, delta, mach, and alt.

fhmcoeff_free A matrix of flap hinge moment coefficients tab
free. These coefficients are a function of alpha,
delta, mach, and alt.

fhmcoeff_lock A matrix of flap hinge moment coefficients tab
locked. These coefficients are a function of
alpha, delta, mach, and alt.

fhmcoeff_gear A matrix of flap hinge moment coefficients due
to gearing. These coefficients are a function of
alpha, delta, mach, and alt.

ttab_def A matrix of trim tab deflections for zero stick
force. These deflections are a function of alpha,
delta, mach, and alt.

High lift and control fields available for trim are:

4-45

datcomimport

cl_utrim A matrix of untrimmed lift coefficients. These
coefficients are a function of alpha, mach, and
alt, and are defined positive for an up acting
load.

cd_utrim A matrix of untrimmed drag coefficients. These
coefficients are a function of alpha, mach, and
alt, and are defined positive for an aft acting
load.

cm_utrim A matrix of untrimmed pitching moment
coefficients. These coefficients are a function of
alpha, mach, and alt, and are defined positive
for a nose-up rotation.

delt_trim A matrix of trimmed control-surface streamwise
deflection angles. These angles are a function
of alpha, mach, and alt.

dcl_trim A matrix of trimmed incremental lift coefficients
in the linear-lift angle of attack range due to
deflection of control surface. These coefficients
are a function of alpha, mach, and alt.

dclmax_trim A matrix of trimmed incremental maximum lift
coefficients. These coefficients are a function of
alpha, mach, and alt.

dcdi_trim A matrix of trimmed incremental induced
drag coefficients due to flap deflection. These
coefficients are a function of alpha, mach, and
alt.

dcdmin_trim A matrix of trimmed incremental minimum
drag coefficients due to control or flap deflection.
These coefficients are a function of alpha, mach,
and alt.

4-46

datcomimport

cha_trim A matrix of trimmed control-surface
hinge-moment derivatives due to angle of
attack. These derivatives are a function of
alpha, mach, and alt.

chd_trim A matrix of trimmed control-surface
hinge-moment derivatives due to control
deflection. These derivatives are a function of
alpha, mach, and alt.

cl_tailutrim A matrix of untrimmed stabilizer lift
coefficients. These coefficients are a function of
alpha, mach, and alt, and are defined positive
for an up acting load.

cd_tailutrim A matrix of untrimmed stabilizer drag
coefficients. These coefficients are a function of
alpha, mach, and alt, and are defined positive
for an aft acting load.

cm_tailutrim A matrix of untrimmed stabilizer pitching
moment coefficients. These coefficients are
a function of alpha, mach, and alt, and are
defined positive for a nose-up rotation.

hm_tailutrim A matrix of untrimmed stabilizer hinge moment
coefficients. These coefficients are a function of
alpha, mach, and alt, and are defined positive
for a stabilizer rotation with leading edge up
and trailing edge down.

aliht_tailtrim A matrix of stabilizer incidence required to
trim. These coefficients are a function of alpha,
mach, and alt.

cl_tailtrim A matrix of trimmed stabilizer lift coefficients.
These coefficients are a function of alpha, mach,
and alt, and are defined positive for an up
acting load.

4-47

datcomimport

cd_tailtrim A matrix of trimmed stabilizer drag coefficients.
These coefficients are a function of alpha, mach,
and alt, and are defined positive for an aft
acting load.

cm_tailtrim A matrix of trimmed stabilizer pitching moment
coefficients. These coefficients are a function of
alpha, mach, and alt, and are defined positive
for a nose-up rotation.

hm_tailtrim A matrix of trimmed stabilizer hinge moment
coefficients. These coefficients are a function of
alpha, mach, and alt, and are defined positive
for a stabilizer rotation with leading edge up
and trailing edge down.

cl_trimi A matrix of lift coefficients at trim incidence.
These coefficients are a function of alpha, mach,
and alt, and are defined positive for an up
acting load.

cd_trimi A matrix of drag coefficients at trim incidence.
These coefficients are a function of alpha, mach,
and alt, and are defined positive for an aft
acting load.

Transverse jet control fields are:

time A matrix of times. These times are stored with
indices of mach, alt, and alpha.

ctrlfrc A matrix of control forces. These forces are
stored with indices of mach, alt, and alpha.

locmach A matrix of local Mach numbers. These Mach
numbers are stored with indices of mach, alt,
and alpha.

4-48

datcomimport

reynum A matrix of Reynolds numbers. These Reynolds
numbers are stored with indices of mach, alt,
and alpha.

locpres A matrix of local pressures. These pressures
are stored with indices of mach, alt, and alpha.

dynpres A matrix of dynamic pressures. These pressures
are stored with indices of mach, alt, and alpha.

blayer A cell array of strings containing the state of
the boundary layer. These states are stored
with indices of mach, alt, and alpha.

ctrlcoeff A matrix of control force coefficients. These
coefficients are stored with indices of mach, alt,
and alpha.

corrcoeff A matrix of corrected force coefficients. These
coefficients are stored with indices of mach, alt,
and alpha.

sonicamp A matrix of sonic amplification factors. These
factors are stored with indices of mach, alt, and
alpha.

ampfact A matrix of amplification factors. These factors
are stored with indices of mach, alt, and alpha.

vacthr A matrix of vacuum thrusts. These thrusts are
stored with indices of mach, alt, and alpha.

minpres A matrix of minimum pressure ratios. These
ratios are stored with indices of mach, alt, and
alpha.

minjet A matrix of minimum jet pressures. These
pressures are stored with indices of mach, alt,
and alpha.

jetpres A matrix of jet pressures. These pressures are
stored with indices of mach, alt, and alpha.

4-49

datcomimport

massflow A matrix of mass flow rates. These rates are
stored with indices of mach, alt, and alpha.

propelwt A matrix of propellant weights. These weights
are stored with indices of mach, alt, and alpha.

Hypersonic fields are:

df_normal A matrix of increments in normal force per
spanwise foot of control. These increments are
stored with indices of alpha, delta, and mach.

df_axial A matrix of increments in axial force per
spanwise foot of control. These increments are
stored with indices of alpha, delta, and mach.

cm_normal A matrix of increments in pitching moment due
to normal force per spanwise foot of control.
These increments are stored with indices of
alpha, delta, and mach.

cm_axial A matrix of increments in pitching moment due
to axial force per spanwise foot of control. These
increments are stored with indices of alpha,
delta, and mach.

cp_normal A matrix of center of pressure locations of
normal force. These locations are stored with
indices of alpha, delta, and mach.

cp_axial A matrix of center of pressure locations of axial
force. These locations are stored with indices of
alpha, delta, and mach.

Auxiliary and partial fields available are:

4-50

datcomimport

wetarea_b A matrix of body wetted area. These areas are
stored with indices of mach, alt, and number
of runs.

xcg_b A matrix of longitudinal locations of the center
of gravity. These locations are stored with
indices of mach, alt, and number of runs
(normally 1, 2 for hypers = true).

zcg_b A matrix of vertical locations of the center of
gravity. These locations are stored with indices
of mach, alt, and number of runs (normally 1,
2 for hypers = true).

basearea_b A matrix of body base area. These areas are
stored with indices of mach, alt, and number of
runs (normally 1, 2 for hypers = true).

cd0_b A matrix of body zero lift drags. These drags are
stored with indices of mach, alt, and number of
runs (normally 1, 2 for hypers = true).

basedrag_b A matrix of body base drags. These drags are
stored with indices of mach, alt, and number of
runs (normally 1, 2 for hypers = true).

fricdrag_b A matrix of body friction drags. These drags are
stored with indices of mach, alt, and number of
runs (normally 1, 2 for hypers = true).

presdrag_b A matrix of body pressure drags. These drags
are stored with indices of mach, alt, and
number of runs (normally 1, 2 for hypers =
true).

lemac A matrix of leading edge mean aerodynamic
chords. These chords are stored with indices
of mach and alt.

sidewash A matrix of sidewash. These values are stored
with indices of mach and alt.

4-51

datcomimport

hiv_b_w A matrix of iv-b(w). These values are stored
with indices of alpha, mach, and alt.

hiv_w_h A matrix of iv-w(h). These values are stored
with indices of alpha, mach, and alt.

hiv_b_h A matrix of iv-b(h). These values are stored
with indices of alpha, mach, and alt.

gamma A matrix of gamma*2*pi*alpha*v*r. These
values are stored with indices of alpha, mach,
and alt.

gamma2pialpvr A matrix of gamma*(2*pi*alpha*v*r)t. These
values are stored with indices of alpha, mach,
and alt.

clpgammacl0 A matrix of clp(gamma=cl=0). These values
are stored with indices of mach and alt.

clpgammaclp A matrix of clp(gamma)/cl (gamma=0). These
values are stored with indices of mach and alt.

cnptheta A matrix of cnp/theta. These values are stored
with indices of mach and alt.

cypgamma A matrix of cyp/gamma. These values are stored
with indices of mach and alt.

cypcl A matrix of cyp/cl (cl=0). These values are
stored with indices of mach and alt.

clbgamma A matrix of clb/gamma. These values are stored
with indices of mach and alt.

cmothetaw A matrix of (cmo/theta)w. These values are
stored with indices of mach and alt.

cmothetah A matrix of (cmo/theta)h. These values are
stored with indices of mach and alt.

espeff A matrix of (epsoln)eff. These values are
stored with indices of alpha, mach, and alt.

4-52

datcomimport

despdalpeff A matrix of d(epsoln)/d(alpha) eff. These
values are stored with indices of alpha, mach,
and alt.

dragdiv A matrix of drag divergence mach number.
These values are stored with indices of mach
and alt.

cd0mach A matrix of four Mach numbers for the zero lift
drag. These values are stored with indices of
index, mach, and alt.

cd0 A matrix of four zero lift drags. These values
are stored with indices of index, mach, and alt.

clbclmfb_**** A matrix of (clb/cl)mfb, where **** is either
wb (wing-body) or bht (body-horizontal tail).
These values are stored with indices of mach
and alt.

cnam14_**** A matrix of (cna)m=1.4, where **** is either wb
(wing-body) or bht (body-horizontal tail). These
values are stored with indices of mach and alt.

area_*_** A matrix of areas, where * is either w (wing), ht
(horizontal tail), vt (vertical tail), or vf (ventral
fin) and ** is either tt (total theoretical),
ti (theoretical inboard), te (total exposed),
ei (exposed inboard), or o (outboard). These
areas are stored with indices of mach, alt, and
number of runs (normally 1, 2 for hypers =
true).

4-53

datcomimport

taperratio_*_** A matrix of taper ratios, where * is either w
(wing), ht (horizontal tail), vt (vertical tail),
or vf (ventral fin) and ** is either tt (total
theoretical), ti (theoretical inboard), te (total
exposed), ei (exposed inboard), or o (outboard).
These ratios are stored with indices of mach,
alt, and number of runs (normally 1, 2 for
hypers = true).

aspectratio_*_** A matrix of aspect ratios, where * is either w
(wing), ht (horizontal tail), vt (vertical tail),
or vf (ventral fin) and ** is either tt (total
theoretical), ti (theoretical inboard), te (total
exposed), ei (exposed inboard), or o (outboard).
These ratios are stored with indices of mach,
alt, and number of runs (normally 1, 2 for
hypers = true).

qcsweep_*_** A matrix of quarter chord sweeps, where * is
either w (wing), ht (horizontal tail), vt (vertical
tail), or vf (ventral fin) and ** is either tt (total
theoretical), ti (theoretical inboard), te (total
exposed), ei (exposed inboard), or o (outboard).
These sweeps are stored with indices of mach,
alt, and number of runs (normally 1, 2 for
hypers = true).

mac_*_** A matrix of mean aerodynamic chords, where
* is either w (wing), ht (horizontal tail), vt
(vertical tail), or vf (ventral fin) and ** is either
tt (total theoretical), ti (theoretical inboard),
te (total exposed), ei (exposed inboard), or o
(outboard). These chords are stored with indices
of mach, alt, and number of runs (normally 1,
2 for hypers = true).

4-54

datcomimport

qcmac_*_** A matrix of quarter chord x(mac), where * is
either w (wing), ht (horizontal tail), vt (vertical
tail), or vf (ventral fin) and ** is either tt (total
theoretical), ti (theoretical inboard), te (total
exposed), ei (exposed inboard), or o (outboard).
These values are stored with indices of mach,
alt, and number of runs (normally 1, 2 for
hypers = true).

ymac_*_** A matrix y(mac), where * is either w (wing), ht
(horizontal tail), vt (vertical tail), or vf (ventral
fin) and ** is either tt (total theoretical),
ti (theoretical inboard), te (total exposed),
ei (exposed inboard), or o (outboard). These
values are stored with indices of mach, alt,
and number of runs (normally 1, 2 for hypers
= true).

cd0_*_** A matrix of zero lift drags, where * is either w
(wing), ht (horizontal tail), vt (vertical tail),
or vf (ventral fin) and ** is either tt (total
theoretical), ti (theoretical inboard), te (total
exposed), ei (exposed inboard), or o (outboard).
These drags are stored with indices of mach,
alt, and number of runs (normally 1, 2 for
hypers = true).

friccoeff_*_** A matrix of friction coefficients, where * is
either w (wing), ht (horizontal tail), vt (vertical
tail), or vf (ventral fin) and ** is either tt (total
theoretical), ti (theoretical inboard), te (total
exposed), ei (exposed inboard), or o (outboard).
These values are stored with indices of mach,
alt, and number of runs (normally 1, 2 for
hypers = true).

4-55

datcomimport

cla_b_*** A matrix of cla-b(***), where *** is either
w (wing) or ht (stabilizer). These values are
stored with indices of mach, alt, and number of
runs (normally 1, 2 for hypers = true).

cla_***_b A matrix of cla-***(b), where *** is either
w (wing) or ht (stabilizer). These values are
stored with indices of mach, alt, and number of
runs (normally 1, 2 for hypers = true).

k_b_*** A matrix of k-b(***), where *** is either
w (wing) or ht (stabilizer). These values are
stored with indices of mach, alt, and number of
runs (normally 1, 2 for hypers = true).

k_***_b A matrix of k-***(b), where *** is either
w (wing) or ht (stabilizer). These values are
stored with indices of mach, alt, and number of
runs (normally 1, 2 for hypers = true).

xacc_b_*** A matrix of xac/c-b(***), where *** is either
w (wing) or ht (stabilizer). These values are
stored with indices of mach, alt, and number of
runs (normally 1, 2 for hypers = true).

cdlcl2_*** A matrix of cdl/cl^2, where *** is either
w (wing) or ht (stabilizer). These values are
stored with indices of mach and alt.

clbcl_*** A matrix of clb/cl, where *** is either w (wing)
or ht (stabilizer). These values are stored with
indices of mach and alt.

fmach0_*** A matrix of force break Mach numbers with
zero sweep, where *** is either w (wing) or
ht (stabilizer). These values are stored with
indices of mach and alt.

4-56

datcomimport

fmach_*** A matrix of force break Mach numbers with
sweep, where *** is either w (wing) or ht
(stabilizer). These values are stored with
indices of mach and alt.

macha_*** A matrix of mach(a), where *** is either w
(wing) or ht (stabilizer). These values are
stored with indices of mach and alt.

machb_*** A matrix of mach(b), where *** is either w
(wing) or ht (stabilizer). These values are
stored with indices of mach and alt.

claa_*** A matrix of cla(a), where *** is either w (wing)
or ht (stabilizer). These values are stored with
indices of mach and alt.

clab_*** A matrix of cla(b), where *** is either w (wing)
or ht (stabilizer). These values are stored with
indices of mach and alt.

clbm06_*** A matrix of (clb/cl)m=0.6, where *** is either
w (wing) or ht (stabilizer). These values are
stored with indices of mach and alt.

clbm14_*** A matrix of (clb/cl)m=1.4, where *** is either
w (wing) or ht (stabilizer). These values are
stored with indices of mach and alt.

clalpmach_*** A matrix of five Mach numbers for the lift
curve slope, where *** is either w (wing) or ht
(stabilizer). These Mach numbers are stored
with indices of index, mach, and alt.

clalp_*** A matrix of five lift curve slope values, where
*** is either w (wing) or ht (stabilizer). These
values are stored with indices of index, mach,
and alt.

4-57

datcomimport

Examples Read the USAF Digital DATCOM output file datcom.out:

aero = datcomimport('datcom.out')

Read the USAF Digital DATCOM output file datcom.out using zeros to
replace data points where no DATCOM methods exist and displaying
status information in the MATLAB Command window:

usenan = false;

aero = datcomimport('datcom.out', usenan, 1)

Assumptions
and
Limitations

The operational limitations of Digital DATCOM apply to the data
contained in AERO. For more information on Digital DATCOM
limitations, see [1], section 2.4.5.

USAF Digital DATCOM data for wing section, horizontal tail section,
vertical tail section and ventral fin section are not read.

References 1. AFFDL-TR-79-3032: The USAF Stability and Control DATCOM,
Volume 1, Users Manual

4-58

dcm2alphabeta

Purpose Convert direction cosine matrix to angle of attack and sideslip angle

Syntax [a b] = dcm2alphabeta(n)

Description [a b] = dcm2alphabeta(n) calculates the angle of attack and sideslip
angle, a and b, for a given direction cosine matrix, n. n is a 3-by-3-by-m
matrix containing m orthogonal direction cosine matrices. a is an m
array of angles of attack. b is an m array of sideslip angles. n performs
the coordinate transformation of a vector in body-axes into a vector in
wind-axes. Angles of attack and sideslip angles are output in radians.

Examples Determine the angle of attack and sideslip angle from direction cosine
matrix:

dcm = [0.8926 0.1736 0.4162; ...
-0.1574 0.9848 -0.0734; ...
-0.4226 0 0.9063];

[alpha beta] = dcm2alphabeta(dcm)

alpha =

0.4363

beta =

0.1745

Determine the angle of attack and sideslip angle from multiple direction
cosine matrices:

dcm = [0.8926 0.1736 0.4162; ...
-0.1574 0.9848 -0.0734; ...
-0.4226 0 0.9063];

dcm(:,:,2) = [0.9811 0.0872 0.1730; ...
-0.0859 0.9962 -0.0151; ...
-0.1736 0 0.9848];

4-59

dcm2alphabeta

[alpha beta] = dcm2alphabeta(dcm)

alpha =

0.4363
0.1745

beta =

0.1745
0.0873

See Also angle2dcm, dcm2angle, dcmbody2wind

4-60

dcm2angle

Purpose Create rotation angles from direction cosine matrix

Syntax [r1 r2 r3] = dcm2angle(n)
[r1 r2 r3] = dcm2angle(n, s)
[r1 r2 r3] = dcm2angle(n, s, lim)

Description [r1 r2 r3] = dcm2angle(n) calculates the set of rotation angles, r1,
r2, r3, for a given direction cosine matrix, n. n is a 3-by-3-by-m matrix
containing m direction cosine matrices. r1 returns an m array of first
rotation angles. r2 returns an m array of second rotation angles. r3
returns an m array of third rotation angles. Rotation angles are input
in radians.

[r1 r2 r3] = dcm2angle(n, s) calculates the set of rotation angles,
r1, r2, r3, for a given direction cosine matrix, n, and a specified rotation
sequence, s.

The default rotation sequence is 'ZYX', where r1 is z-axis rotation, r2
is y-axis rotation, and r3 is x-axis rotation.

Supported rotation sequence strings are 'ZYX', 'ZYZ', 'ZXY', 'ZXZ',
'YXZ', 'YXY', 'YZX', 'YZY', 'XYZ', 'XYX', 'XZY', and 'XZX'.

[r1 r2 r3] = dcm2angle(n, s, lim) calculates the set of rotation
angles, r1, r2, r3, for a given direction cosine matrix, n, a specified
rotation sequence, s, and a specified angle constraint, lim. lim is a
string specifying either 'Default' or 'ZeroR3'. See “Assumptions and
Limitations” on page 4-63 for full definitions of angle constraints.

Examples Determine the rotation angles from direction cosine matrix:

dcm = [0 1 0; 1 0 0; 0 0 1];
[yaw pitch roll] = dcm2angle(dcm)

yaw =

1.5708

4-61

dcm2angle

pitch =

0

roll =

0

Determine the rotation angles from multiple direction cosine matrices:

dcm = [0 1 0; 1 0 0; 0 0 1];

dcm(:,:,2) = [0.85253103550038 0.47703040785184 -0.21361840626067; ...

-0.43212157513194 0.87319830445628 0.22537893734811; ...

0.29404383655186 -0.09983341664683 0.95056378592206];

[pitch roll yaw] = dcm2angle(dcm, 'YXZ')

pitch =

0

0.3000

roll =

0

0.1000

yaw =

1.5708

0.5000

4-62

dcm2angle

Assumptions
and
Limitations

The 'Default' limitations for the 'ZYX', 'ZXY', 'YXZ', 'YZX', 'XYZ',
and 'XZY' implementations generate an r2 angle that lies between ±90
degrees, and r1 and r3 angles that lie between ±180 degrees.

The 'Default' limitations for the 'ZYZ', 'ZXZ', 'YXY', 'YZY', 'XYX',
and 'XZX' implementations generate an r2 angle that lies between 0
and 180 degrees, and r1 and r3 angles that lie between ±180 degrees.

The 'ZeroR3' limitations for the 'ZYX', 'ZXY', 'YXZ', 'YZX', 'XYZ',
and 'XZY' implementations generate an r2 angle that lies between ±90
degrees, and r1 and r3 angles that lie between ±180 degrees. However,
when r2 is ±90 degrees, r3 is set to 0 degrees.

The 'ZeroR3' limitations for the 'ZYZ', 'ZXZ', 'YXY', 'YZY', 'XYX',
and 'XZX' implementations generate an r2 angle that lies between 0
and 180 degrees, and r1 and r3 angles that lie between ±180 degrees.
However, when r2 is 0 or ±180 degrees, r3 is set to 0 degrees.

See Also angle2dcm, dcm2quat, quat2dcm, quat2euler

4-63

dcm2latlon

Purpose Convert direction cosine matrix to geodetic latitude and longitude

Syntax [lat lon] = dcm2latlon(n)

Description [lat lon] = dcm2latlon(n) calculates the geodetic latitude and
longitude, lat and lon, for a given direction cosine matrix, n. n is a
3-by-3-by-m matrix containing m orthogonal direction cosine matrices.
lat is an m array of geodetic latitudes. lon is an m array of longitudes. n
performs the coordinate transformation of a vector in Earth-centered
Earth-fixed (ECEF) axes into a vector in north-east-down (NED) axes.
Geodetic latitudes and longitudes are output in degrees.

Examples Determine the geodetic latitude and longitude from direction cosine
matrix:

dcm = [0.3747 0.5997 0.7071; ...
0.8480 -0.5299 0; ...
0.3747 0.5997 -0.7071];

[lat lon] = dcm2latlon(dcm)

lat =

44.9995

lon =

-122.0005

Determine the geodetic latitude and longitude from multiple direction
cosine matrices:

dcm = [0.3747 0.5997 0.7071; ...
0.8480 -0.5299 0; ...
0.3747 0.5997 -0.7071];

dcm(:,:,2) = [-0.0531 0.6064 0.7934; ...
0.9962 0.0872 0; ...

4-64

dcm2latlon

-0.0691 0.7903 -0.6088];
[lat lon] = dcm2latlon(dcm)

lat =

44.9995
37.5028

lon =

-122.0005
-84.9975

See Also angle2dcm, dcm2angle, dcmecef2ned

4-65

dcm2quat

Purpose Convert direction cosine matrix to quaternion

Syntax q = dcm2quat(n)

Description q = dcm2quat(n) calculates the quaternion, q, for a given direction
cosine matrix, n. Input n is a 3-by-3-by-m matrix of orthogonal direction
cosine matrices. The direction cosine matrix performs the coordinate
transformation of a vector in inertial axes to a vector in body axes. q
returns an m-by-4 matrix containing m quaternions. q has its scalar
number as the first column.

Examples Determine the quaternion from direction cosine matrix:

dcm = [0 1 0; 1 0 0; 0 0 1];
q = dcm2quat(dcm)

q =

0.7071 0 0 0

Determine the quaternions from multiple direction cosine matrices:

dcm = [0 1 0; 1 0 0; 0 0 1];
dcm(:,:,2) = [0.4330 0.2500 -0.8660; ...

0.1768 0.9186 0.3536; ...
0.8839 -0.3062 0.3536];

q = dcm2quat(dcm)

q =

0.7071 0 0 0
0.8224 0.2006 0.5320 0.0223

See Also angle2dcm, dcm2angle, euler2quat, quat2dcm, quat2euler

4-66

dcmbody2wind

Purpose Convert angle of attack and sideslip angle to direction cosine matrix

Syntax n = dcmbody2wind(a, b)

Description n = dcmbody2wind(a, b) calculates the direction cosine matrix, n, for
given angle of attack and sideslip angle, a, b. a is an m array of angles
of attack. b is an m array of sideslip angles. n returns a 3-by-3-by-m
matrix containing m direction cosine matrices. n performs the coordinate
transformation of a vector in body-axes into a vector in wind-axes.
Angles of attack and sideslip angles are input in radians.

Examples Determine the direction cosine matrix from angle of attack and sideslip
angle:

alpha = 0.4363;
beta = 0.1745;
dcm = dcmbody2wind(alpha, beta)

dcm =

0.8926 0.1736 0.4162
-0.1574 0.9848 -0.0734
-0.4226 0 0.9063

Determine the direction cosine matrix from multiple angles of attack
and sideslip angles:

alpha = [0.4363 0.1745];
beta = [0.1745 0.0873];
dcm = dcmbody2wind(alpha, beta)

dcm(:,:,1) =

0.8926 0.1736 0.4162
-0.1574 0.9848 -0.0734
-0.4226 0 0.9063

4-67

dcmbody2wind

dcm(:,:,2) =

0.9811 0.0872 0.1730
-0.0859 0.9962 -0.0151
-0.1736 0 0.9848

See Also angle2dcm, dcm2alphabeta, dcm2angle

4-68

dcmecef2ned

Purpose Convert geodetic latitude and longitude to direction cosine matrix

Syntax n = dcmecef2ned(lat, lon)

Description n = dcmecef2ned(lat, lon) calculates the direction cosine matrix, n,
for a given set of geodetic latitude and longitude, lat, lon. lat is an m
array of geodetic latitudes. lon is an m array of longitudes. n returns a
3-by-3-by-m matrix containing m direction cosine matrices. n performs
the coordinate transformation of a vector in Earth-centered Earth-fixed
(ECEF) axes into a vector in north-east-down (NED) axes. Geodetic
latitudes and longitudes are input in degrees.

Examples Determine the direction cosine matrix from geodetic latitude and
longitude:

lat = 45;
lon = -122;
dcm = dcmecef2ned(lat, lon)

dcm =

0.3747 0.5997 0.7071
0.8480 -0.5299 0
0.3747 0.5997 -0.7071

Determine the direction cosine matrix from multiple geodetic latitudes
and longitudes:

lat = [45 37.5];
lon = [-122 -85];
dcm = dcmecef2ned(lat, lon)

dcm(:,:,1) =

0.3747 0.5997 0.7071
0.8480 -0.5299 0
0.3747 0.5997 -0.7071

4-69

dcmecef2ned

dcm(:,:,2) =

-0.0531 0.6064 0.7934
0.9962 0.0872 0

-0.0691 0.7903 -0.6088

See Also angle2dcm, dcm2angle, dcm2latlon

4-70

decyear

Purpose Calculate decimal year

Syntax dy = decyear(v)
dy = decyear(s,f)
dy = decyear(y,mo,d)
dy = decyear([y,mo,d])
dy = decyear(y,mo,d,h,mi,s)
dy = decyear([y,mo,d,h,mi,s])

Description dy = decyear(v) converts one or more date vectors, v, into decimal
year, dy. Input v can be an m-by-6 or m-by-3 matrix containing m full
or partial date vectors, respectively. decyear returns a column vector
of m decimal years.

A date vector contains six elements, specifying year, month, day,
hour, minute, and second. A partial date vector has three elements,
specifying year, month, and day. Each element of v must be a positive
double-precision number.

dy = decyear(s,f) converts one or more date strings, s, to decimal
year, dy, using format string f. s can be a character array where each
row corresponds to one date string, or a one-dimensional cell array of
strings. decyear returns a column vector of m decimal years, where m is
the number of strings in s.

All of the date strings in s must have the same format f, which must
be composed of date format symbols listed in the datestr function
reference page. Formats containing the letter Q are not accepted by
decyear.

Certain formats may not contain enough information to compute a date
number. In those cases, hours, minutes, and seconds default to 0, days
default to 1, months default to January, and years default to the current
year. Date strings with two-character years are interpreted to be within
the 100 years centered around the current year.

dy = decyear(y,mo,d) and dy = decyear([y,mo,d]) return the
decimal year for corresponding elements of the y,mo,d (year,month,day)

4-71

decyear

arrays. y, mo, and d must be arrays of the same size (or any of them
can be a scalar).

dy = decyear(y,mo,d,h,mi,s) and dy = decyear([y,mo,d,h,mi,s])
return the decimal year for corresponding elements of the
y,mo,d,h,mi,s (year,month,day,hour,minute,second) arrays. The six
arguments must be arrays of the same size (or any of them can be a
scalar).

Examples Calculate decimal year for May 24, 2005:

dy = decyear('24-May-2005','dd-mmm-yyyy')

dy =

2.0054e+003

Calculate decimal year for December 19, 2006:

dy = decyear(2006,12,19)

dy =

2.0070e+003

Calculate decimal year for October 10, 2004, at 12:21:00 p.m.:

dy = decyear(2004,10,10,12,21,0)

dy =

2.0048e+003

Assumptions
and
Limitations

The calculation of decimal year does not take into account leap seconds.

See Also juliandate, leapyear, mjuliandate

4-72

dpressure

Purpose Compute dynamic pressure using velocity and density

Syntax q = dpressure(v, r)

Description q = dpressure(v, r) computes m dynamic pressures, q, from an m-by-3
array of velocities, v, and an array of m densities, r. v and r must have
the same length units.

Examples Determine dynamic pressure for velocity in feet per second and density
in slugs per feet cubed:

q = dpressure([84.3905 33.7562 10.1269], 0.0024)

q =

10.0365

Determine dynamic pressure for velocity in meters per second and
density in kilograms per meters cubed:

q = dpressure([25.7222 10.2889 3.0867], [1.225 0.3639])

q =

475.9252
141.3789

Determine dynamic pressure for velocity in meters per second and
density in kilograms per meters cubed:

q = dpressure([50 20 6; 5 0.5 2], [1.225 0.3639])

q =

4-73

dpressure

1.0e+003 *

1.7983
0.0053

See Also airspeed, machnumber

4-74

ecef2lla

Purpose Convert Earth-centered Earth-fixed (ECEF) coordinates to geodetic
coordinates

Syntax lla = ecef2lla(p)
lla = ecef2lla(p, model)
lla = ecef2lla(p, f, Re)

Description lla = ecef2lla(p) converts the m-by-3 array of ECEF coordinates,
p, to an m-by-3 array of geodetic coordinates (latitude, longitude and
altitude), lla. lla is in [degrees degrees meters]. p is in meters. The
default ellipsoid planet is WGS84.

lla = ecef2lla(p, model) is an alternate method for converting the
coordinates for a specific ellipsoid planet. Currently only 'WGS84' is
supported for model.

lla = ecef2lla(p, f, Re) is another alternate method for converting
the coordinates for a custom ellipsoid planet defined by flattening, f,
and the equatorial radius, Re, in meters.

Examples Determine latitude, longitude, and altitude at a coordinate:

lla = ecef2lla([4510731 4510731 0])

lla =

0 45.0000 999.9564

Determine latitude, longitude, and altitude at multiple coordinates,
specifying WGS84 ellipsoid model:

lla = ecef2lla([4510731 4510731 0; 0 4507609 4498719], 'WGS84')

lla =

0 45.0000 999.9564

4-75

ecef2lla

45.1358 90.0000 999.8659

Determine latitude, longitude, and altitude at multiple coordinates,
specifying custom ellipsoid model:

f = 1/196.877360;
Re = 3397000;
lla = ecef2lla([4510731 4510731 0; 0 4507609 4498719], f, Re)

lla =

1.0e+006 *

0 0.0000 2.9821
0.0000 0.0001 2.9801

See Also geoc2geod, geod2geoc, lla2ecef

4-76

euler2quat

Purpose Convert Euler angles to quaternion

Syntax q = euler2quat(ea)

Description q = euler2quat(ea) calculates the quaternion, q, for given Euler
angles, ea. Input ea is an m-by-3 matrix of Euler angles. q returns an
m-by-4 matrix containing m quaternions. q has its scalar number as the
first column. Euler angles are input in radians.

Examples Determine the quaternion from ea = [0.7854 0 0.7854]:

q = euler2quat([0.7854 0 0.7854])

q =

0.8536 0.3536 0.1464 0.3536

Determine the quaternions from multiple Euler angles:

ea = [0.7854 0 0.7854; 0.5 0.3 0.1];
q = euler2quat(ea)

q =

0.8536 0.3536 0.1464 0.3536
0.9587 0.2371 0.1568 0.0110

See Also dcm2quat, quat2dcm, quat2euler

4-77

fganimation

Purpose Construct FlightGear animation object

Syntax h = fganimation

Description h = fganimation constructs a FlightGear animation object. The
FlightGear animation object is returned to h.

The animation object has the following properties:

TimeseriesSource Specify variable that contains the
timeseries data.

TimeseriesSourceType Specify the type of timeseries data
stored in 'TimeseriesSource'.
Five values are available. They
are listed in the following table.
The default value is 'Array6DoF'.

TimeseriesReadFcn Specify a function to read
the timeseries data if
'TimeseriesSourceType' is
'Custom'.

TimeScaling Specify the seconds of animation
data per second of wall-clock time.
The default ratio is 1.

FramesPerSecond Specify the number of frames
per second used to animate the
'TimeseriesSource'. The default
value is 12 frames per second.

FlightGearVersion Select your FlightGear software
version: '0.9.3', '0.9.8',
'0.9.9' or '0.9.10'. The default
version is '0.9.10'.

4-78

fganimation

OutputFileName Specify the name of the output
file. The file name is the name
of the command you will use to
start FlightGear with these initial
parameters. The default value is
'runfg.bat'.

FlightGearBaseDirectory Specify the name of your
FlightGear installation
directory. The default value is
'D:\Applications\FlightGear'.

GeometryModelName Specify the name of the
folder containing the desired
model geometry in the
FlightGear\data\Aircraft
directory. The default value is
'HL20'.

DestinationIpAddress Specify your destination IP
address. The default value is
'127.0.0.1'.

DestinationPort Specify your network flight
dynamics model (fdm) port. This
destination port should be an
unused port that you can use
when you launch FlightGear. The
default value is '5502'.

AirportId Specify the airport ID. The list of
supported airports is available in
the FlightGear interface, under
Location. The default value is
'KSFO'.

RunwayId Specify the runway ID. The default
value is '10L'.

4-79

fganimation

InitialAltitude Specify the initial altitude of the
aircraft, in feet. The default value
is 7224 feet.

InitialHeading Specify the initial heading of the
aircraft, in degrees. The default
value is 113 degrees.

OffsetDistance Specify the offset distance of the
aircraft from the airport, in miles.
The default value is 4.72 miles.

OffsetAzimuth Specify the offset azimuth of the
aircraft, in degrees. The default
value is 0 degrees.

The timeseries data, stored in the property 'TimeseriesSource', is
interpreted according to the 'TimeseriesSourceType' property, which
can be one of:

'Timeseries' MATLAB timeseries data with 6
values per time:

lat lon alt phi theta psi

The values are resampled.

'StructureWithTime' Simulink struct with time (Simulink
root outport logging 'Structure with
time'):

• signals(1).values: lat lon
alt

• signals(2).values: phi theta
psi

Signals are linearly interpolated vs.
time using interp1.

4-80

fganimation

'Array6DoF' A double precision array in n rows and
7 columns for 6-DoF data: time lat
lon alt phi theta psi. If a double
precision array of 8 or more columns
is in 'TimeseriesSource', the first 7
columns are used as 6-DoF data.

'Array3DoF' A double precision array in n rows
and 4 columns for 3-DoF data: time
lat alt theta. If a double precision
array of 5 or more columns is in
'TimeseriesSource', the first 4
columns are used as 3-DoF data.

'Custom' Position and angle data is retrieved
from 'TimeseriesSource'
by the currently registered
'TimeseriesReadFcn'.

Examples Construct a FlightGear animation object, h:

h = fganimation

See Also generaterunscript, play

4-81

GenerateRunScript

Purpose Generate run script for FlightGear flight simulator

Syntax GenerateRunScript(h)

Description GenerateRunScript(h) generates a run script for FlightGear flight
simulator using the following FlightGear animation object properties:

OutputFileName Specify the name of the output
file. The file name is the name
of the command you will use to
start FlightGear with these initial
parameters. The default value is
'runfg.bat'.

FlightGearBaseDirectory Specify the name of your
FlightGear installation
directory. The default value is
'D:\Applications\FlightGear'.

GeometryModelName Specify the name of the
folder containing the desired
model geometry in the
FlightGear\data\Aircraft
directory. The default value is
'HL20'.

DestinationIpAddress Specify your destination IP
address. The default value is
'127.0.0.1'.

DestinationPort Specify your network flight
dynamics model (fdm) port. This
destination port should be an
unused port that you can use
when you launch FlightGear. The
default value is '5502'.

4-82

GenerateRunScript

AirportId Specify the airport ID. The list of
supported airports is available in
the FlightGear interface, under
Location. The default value is
'KSFO'.

RunwayId Specify the runway ID. The default
value is '10L'.

InitialAltitude Specify the initial altitude of the
aircraft, in feet. The default value
is 7224 feet.

InitialHeading Specify the initial heading of the
aircraft, in degrees. The default
value is 113 degrees.

OffsetDistance Specify the offset distance of the
aircraft from the airport, in miles.
The default value is 4.72 miles.

OffsetAzimuth Specify the offset azimuth of the
aircraft, in degrees. The default
value is 0 degrees.

Examples Create a run script, runfg.bat, to start FlightGear flight simulator
using the default object settings:

h = fganimation
GenerateRunScript(h)

Create a run script, myscript.bat, to start FlightGear flight simulator
using the default object settings:

h = fganimation
h.OutputFileName = 'myscript.bat'
GenerateRunScript(h)

See Also fganimation, play

4-83

geoc2geod

Purpose Convert geocentric latitude to geodetic latitude

Syntax gd = geoc2geod(gc, r)
gd = geoc2geod(gc, r, model)
gd = geoc2geod(gc, r, f, Re)

Description gd = geoc2geod(gc, r) converts an array of m geocentric latitudes, gc,
and an array of radii from the center of the planet, r, into an array of m
geodetic latitudes, gd. Both gc and gd are in degrees. r is in meters.

gd = geoc2geod(gc, r, model) is an alternate method for converting
from geocentric to geodetic latitude for a specific ellipsoid planet.
Currently only 'WGS84' is supported for model.

gd = geoc2geod(gc, r, f, Re) is another alternate method for
converting from geocentric to geodetic latitude for a custom ellipsoid
planet defined by flattening, f, and the equatorial radius, Re, in meters.

Geometric relationships are used to calculate the geodetic latitude in
this noniterative method.

Examples Determine geodetic latitude given a geocentric latitude and radius:

gd = geoc2geod(45, 6379136)

gd =

45.1921

Determine geodetic latitude at multiple geocentric latitudes, given a
radius and specifying WGS84 ellipsoid model:

gd = geoc2geod([0 45 90], 6379136, 'WGS84')

gd =

0 45.1921 90.0000

4-84

geoc2geod

Determine geodetic latitude at multiple geocentric latitudes, given a
radius and specifying custom ellipsoid model:

f = 1/196.877360;
Re = 3397000;
gd = geoc2geod([0 45 90], 6379136, f, Re)

gd =

0 45.1550 90.0000

Assumptions
and
Limitations

This implementation generates a geodetic latitude that lies between
±90 degrees.

References Jackson, E.B., Manual for a Workstation-based Generic Flight
Simulation Program (LaRCsim) Version 1.4, NASA TM 110164, April,
1995

Hedgley, D. R., Jr., An Exact Transformation from Geocentric to Geodetic
Coordinates for Nonzero Altitudes, NASA TR R-458, March, 1976

Clynch, J. R., Radius of the Earth — Radii Used
in Geodesy, Naval Postgraduate School, 2002,
http://www.oc.nps.navy.mil/oc2902w/geodesy/radiigeo.pdf

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John
Wiley & Sons, New York, NY, 1992

Edwards, C. H., and D. E. Penny, Calculus and Analytical Geometry,
2nd Edition, Prentice-Hall, Englewood Cliffs, NJ, 1986

See Also geod2geoc, ecef2lla, lla2ecef

4-85

http://www.oc.nps.navy.mil/oc2902w/geodesy/radiigeo.pdf

geocradius

Purpose Estimate radius of ellipsoid planet at geocentric latitude

Syntax r = geocradius(lambda)
r = geocradius(lambda, model)
r = geocradius(lambda, f, Re)

Description r = geocradius(lambda) estimates the radius, r, of an ellipsoid planet
at a particular geocentric latitude, lambda. lambda is in degrees. r is in
meters. The default ellipsoid planet is WGS84.

r = geocradius(lambda, model) is an alternate method for
estimating the radius for a specific ellipsoid planet. Currently only
'WGS84' is supported for model.

r = geocradius(lambda, f, Re) is another alternate method for
estimating the radius for a custom ellipsoid planet defined by flattening,
f, and the equatorial radius, Re, in meters.

Examples Determine radius at 45 degrees latitude:

r = geocradius(45)

r =

6.3674e+006

Determine radius at multiple latitudes:

r = geocradius([0 45 90])

r =

1.0e+006 *

6.3781 6.3674 6.3568

4-86

geocradius

Determine radius at multiple latitudes, specifying WGS84 ellipsoid
model:

r = geocradius([0 45 90], 'WGS84')

r =

1.0e+006 *

6.3781 6.3674 6.3568

Determine radius at multiple latitudes, specifying custom ellipsoid
model:

f = 1/196.877360;
Re = 3397000;
r = geocradius([0 45 90], f, Re)

r =

1.0e+006 *

3.3970 3.3883 3.3797

References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John
Wiley & Sons, New York, NY, 1992

Zipfel, P. H., and D. E. Penny, Modeling and Simulation of Aerospace
Vehicle Dynamics, AIAA Education Series, Reston, VA, 2000

See Also geoc2geod, geod2geoc

4-87

geod2geoc

Purpose Convert geodetic latitude to geocentric latitude

Syntax gc = geod2geoc(gd, h)
gc = geod2geoc(gd, h, model)
gc = geod2geoc(gd, h, f, Re)

Description gc = geod2geoc(gd, h) converts an array of m geodetic latitudes, gd,
and an array of mean sea level altitudes, h, into an array of m geocentric
latitudes, gc. Both gc and gd are in degrees. h is in meters.

gc = geod2geoc(gd, h, model) is an alternate method for converting
from geodetic to geocentric latitude for a specific ellipsoid planet.
Currently only 'WGS84' is supported for model.

gc = geod2geoc(gd, h, f, Re) is another alternate method for
converting from geodetic to geocentric latitude for a custom ellipsoid
planet defined by flattening, f, and the equatorial radius, Re, in meters.

Examples Determine geocentric latitude given a geodetic latitude and altitude:

gc = geod2geoc(45, 1000)

gc =

44.8076

Determine geocentric latitude at multiple geodetic latitudes and
altitudes, specifying WGS84 ellipsoid model:

gc = geod2geoc([0 45 90], [1000 0 2000], 'WGS84')

gc =

0
44.8076
90.0000

4-88

geod2geoc

Determine geocentric latitude at multiple geodetic latitudes, given an
altitude and specifying custom ellipsoid model:

f = 1/196.877360;
Re = 3397000;
gc = geod2geoc([0 45 90], 2000, f, Re)

gc =

0
44.7084
90.0000

Assumptions
and
Limitations

This implementation generates a geocentric latitude that lies between
±90 degrees.

References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John
Wiley & Sons, New York, NY, 1992

See Also geoc2geod, ecef2lla, lla2ecef

4-89

gravitywgs84

Purpose Implement 1984 World Geodetic System (WGS84) representation of
Earth’s gravity

Syntax g = gravitywgs84(h, lat)
g = gravitywgs84(h, lat, lon, method, [noatm, nocent, prec,

jd], action)
gt = gravitywgs84(h, lat, lon, 'Exact', [noatm, nocent, prec,

jd], action)
[g gn] = gravitywgs84(h, lat, lon, 'Exact', [noatm, nocent,

prec, jd], action)

Description g = gravitywgs84(h, lat) implements the mathematical
representation of the geocentric equipotential ellipsoid of WGS84.
Using h, an array of m altitudes in meters, and lat, an array of m
geodetic latitudes in degrees, calculates g, an array of m gravity values
in the direction normal to the Earth’s surface at a specific location.
The default calculation method is Taylor Series. Gravity precision is
controlled via the method parameter.

g = gravitywgs84(h, lat, lon, method, [noatm, nocent, prec,
jd], action) lets you specify both latitude and longitude, as well as
other optional inputs, when calculating gravity values in the direction
normal to the Earth’s surface. In this format, method can be either
'CloseApprox'or'Exact'.

gt = gravitywgs84(h, lat, lon, 'Exact', [noatm, nocent,
prec, jd], action) calculates an array of total gravity values in the
direction normal to the Earth’s surface.

[g gn] = gravitywgs84(h, lat, lon, 'Exact', [noatm, nocent,
prec, jd], action) calculates gravity values in the direction both
normal and tangential to the Earth’s surface.

Inputs for gravitywgs84 are:

4-90

gravitywgs84

h An array of m altitudes, in meters

lat An array of m geodetic latitudes, in degrees,
where north latitude is positive, and south
latitude is negative

lon An array of m geodetic longitudes, in
degrees, where east longitude is positive,
and west longitude is negative. This input
is available only with method specified as
'CloseApprox'or'Exact'.

method A string specifying the method to calculate
gravity: 'TaylorSeries', 'CloseApprox', or
'Exact'. The default is 'TaylorSeries'.

noatm A logical value specifying the exclusion of
Earth’s atmosphere. Set to true for the Earth’s
gravitational field to exclude the mass of
the atmosphere. Set to false for the value
for the Earth’s gravitational field to include
the mass of the atmosphere. This option
is available only with method specified as
'CloseApprox'or'Exact'. The default is
false.

nocent A logical value specifying the removal of
centrifugal effects. Set to true to calculate
gravity based on pure attraction resulting from
the normal gravitational potential. Set to false
to calculate gravity including the centrifugal
force resulting from the Earth’s angular
velocity. This option is available only with
method specified as 'CloseApprox'or'Exact'.
The default is false.

4-91

gravitywgs84

prec A logical value specifying the presence of a
precessing reference frame. Set to true for the
angular velocity of the Earth to be calculated
using the International Astronomical Union
(IAU) value of the Earth’s angular velocity
and the precession rate in right ascension. To
obtain the precession rate in right ascension,
Julian Centuries from Epoch J2000.0 is
calculated using the Julian date, jd. If set to
false, the angular velocity of the Earth used
is the value of the standard Earth rotating
at a constant angular velocity. This option
is available only with method specified as
'CloseApprox'or'Exact'. The default is
false.

jd A scalar value specifying Julian date used to
calculate Julian Centuries from Epoch J2000.0.
This input is available only with method
specified as 'CloseApprox'or'Exact'.

action A string to determine action for out-of-range
input. Specify if out-of-range input invokes a
'Warning', 'Error', or no action ('None'). The
default is 'Warning'.

Outputs calculated for the Earth’s gravity include:

4-92

gravitywgs84

g An array of m gravity values in the direction
normal to the Earth’s surface at a specific
lat lon location. A positive value indicates a
downward direction.

gt An array of m total gravity values in the
direction normal to the Earth’s surface at a
specific lat lon location. A positive value
indicates a downward direction. This option is
available only with method specified as'Exact'.

gn An array of m gravity values in the direction
tangential to the Earth’s surface at a specific
lat lon location. A positive value indicates a
northward direction. This option is available
only with method specified as'Exact'.

Examples Calculate the normal gravity at 5000 meters and 55 degrees latitude
using the Taylor Series approximation method with errors for
out-of-range inputs:

g = gravitywgs84(5000, 55, 'TaylorSeries', 'Error')

g =

9.7997

Calculate the normal gravity at 15,000 meters, 45 degrees latitude,
and 120 degrees longitude using the Close Approximation method with
atmosphere, centrifugal effects, and no precessing, with warnings for
out-of-range inputs:

g = gravitywgs84(15000, 45, 120, 'CloseApprox')

g =

4-93

gravitywgs84

9.7601

Calculate the normal and tangential gravity at 1000 meters, 0 degrees
latitude, and 20 degrees longitude using the Exact method with
atmosphere, centrifugal effects, and no precessing, with warnings for
out-of-range inputs:

[g, gt] = gravitywgs84(1000, 0, 20, 'Exact')

g =

9.7772

gt =

0

Calculate the normal and tangential gravity at 1000 meters, 0 degrees
latitude, and 20 degrees longitude and 11,000 meters, 30 degrees
latitude, and 50 degrees longitude using the Exact method with
atmosphere, centrifugal effects, and no precessing, with no actions for
out-of-range inputs:

h = [1000; 11000];
lat = [0; 30];
lon = [20; 50];
[g, gt] = gravitywgs84(h, lat, lon, 'Exact', 'None')

g =

9.7772
9.7594

4-94

gravitywgs84

gt =

1.0e-004 *

0
-0.7751

Calculate the normal gravity at 15,000 meters, 45 degrees latitude,
and 120 degrees longitude and 5000 meters, 55 degrees latitude, and
100 degrees longitude using the Close Approximation method with
atmosphere, no centrifugal effects, and no precessing, with warnings for
out-of-range inputs:

h = [15000 5000];

lat = [45 55];

lon = [120 100];

g = gravitywgs84(h, lat, lon, 'CloseApprox', [false true false 0])

g =

9.7771 9.8109

Calculate the normal and tangential gravity at 1000 meters, 0 degrees
latitude, and 20 degrees longitude using the Exact method with
atmosphere, centrifugal effects, and precessing at Julian date 2451545,
with warnings for out-of-range inputs:

[g, gt] = gravitywgs84(1000, 0, 20, 'Exact', ...
[false false true 2451545], 'Warning')

g =

9.7772

4-95

gravitywgs84

gt =

0

Calculate the normal gravity at 15,000 meters, 45 degrees latitude, and
120 degrees longitude using the Close Approximation method with no
atmosphere, with centrifugal effects, and with precessing at Julian date
2451545, with errors for out-of-range inputs:

g = gravitywgs84(15000, 45, 120, 'CloseApprox', ...
[true false true 2451545], 'Error')

g =

9.7601

Calculate the total normal gravity at 15,000 meters, 45 degrees latitude,
and 120 degrees longitude using the Exact method with no atmosphere,
with centrifugal effects, and with precessing at Julian date 2451545,
with errors for out-of-range inputs:

g = gravitywgs84(15000, 45, 120, 'Exact', ...
[true false true 2451545], 'Error')

g =

9.7601

Assumptions
and
Limitations

The WGS84 gravity calculations are based on the assumption of a
geocentric equipotential ellipsoid of revolution. Since the gravity
potential is assumed to be the same everywhere on the ellipsoid, there
must be a specific theoretical gravity potential that can be uniquely
determined from the four independent constants defining the ellipsoid.

4-96

gravitywgs84

Use of the WGS84 Taylor Series model should be limited to low geodetic
heights. It is sufficient near the surface when submicrogal precision is
not necessary. At medium and high geodetic heights, it is less accurate.

Use of the WGS84 Close Approximation model should be limited to a
geodetic height of 20,000.0 meters (approximately 65,620.0 feet). Below
this height, it gives results with submicrogal precision.

References NIMA TR8350.2: “Department of Defense World Geodetic System 1984,
Its Definition and Relationship with Local Geodetic Systems.”

4-97

juliandate

Purpose Calculate Julian date

Syntax jd = juliandate(v)
jd = juliandate(s,f)
jd = juliandate(y,mo,d)
jd = juliandate([y,mo,d])
jd = juliandate(y,mo,d,h,mi,s)
jd = juliandate([y,mo,d,h,mi,s])

Description jd = juliandate(v) converts one or more date vectors, v, into Julian
date, jd. Input v can be an m-by-6 or m-by-3 matrix containing m full or
partial date vectors, respectively. juliandate returns a column vector
of m Julian dates, which are the number of days and fractions since noon
Universal Time on January 1, 4713 BCE.

A date vector contains six elements, specifying year, month, day,
hour, minute, and second. A partial date vector has three elements,
specifying year, month, and day. Each element of v must be a positive
double-precision number.

jd = juliandate(s,f) converts one or more date strings, s, into Julian
date, jd, using format string f. s can be a character array where each
row corresponds to one date string, or a one-dimensional cell array of
strings. juliandate returns a column vector of m Julian dates, where m
is the number of strings in s.

All of the date strings in s must have the same format f, which must
be composed of date format symbols listed in the datestr function
reference page. Formats containing the letter Q are not accepted by
juliandate.

Certain formats may not contain enough information to compute a date
number. In those cases, hours, minutes, and seconds default to 0, days
default to 1, months default to January, and years default to the current
year. Date strings with two-character years are interpreted to be within
the 100 years centered around the current year.

jd = juliandate(y,mo,d) and jd = juliandate([y,mo,d])
return the decimal year for corresponding elements of the y,mo,d

4-98

juliandate

(year,month,day) arrays. y, mo, and d must be arrays of the same size
(or any of them can be a scalar).

jd = juliandate(y,mo,d,h,mi,s) and jd =
juliandate([y,mo,d,h,mi,s]) return the Julian
dates for corresponding elements of the y,mo,d,h,mi,s
(year,month,day,hour,minute,second) arrays. The six arguments must
be arrays of the same size (or any of them can be a scalar).

Examples Calculate Julian date for May 24, 2005:

jd = juliandate('24-May-2005','dd-mmm-yyyy')

jd =

2.4535e+006

Calculate Julian date for December 19, 2006:

jd = juliandate(2006,12,19)

jd =

2.4541e+006

Calculate Julian date for October 10, 2004, at 12:21:00 p.m.:

jd = juliandate(2004,10,10,12,21,0)

jd =

2.4533e+006

Assumptions
and
Limitations

This function is valid for all common era (CE) dates in the Gregorian
calendar.

The calculation of Julian date does not take into account leap seconds.

See Also decyear, leapyear, mjuliandate

4-99

leapyear

Purpose Determine leap year

Syntax ly = leapyear(year)

Description ly = leapyear(year) determines whether one or more years are leap
years or not. The output, ly, is a logical array. year should be numeric.

Examples Determine whether 2005 is a leap year:

ly = leapyear(2005)

ly =

0

Determine whether 2000, 2005, and 2020 are leap years:

ly = leapyear([2000 2005 2020])

ly =

1 0 1

Assumptions
and
Limitations

The determination of leap years is done by Gregorian calendar rules.

See Also decyear, juliandate, mjuliandate

4-100

lla2ecef

Purpose Convert geodetic coordinates to Earth-centered Earth-fixed (ECEF)
coordinates

Syntax p = lla2ecef(lla)
p = lla2ecef(lla, model)
p = lla2ecef(lla, f, Re)

Description p = lla2ecef(lla) converts an m-by-3 array of geodetic coordinates
(latitude, longitude and altitude), lla, to an m-by-3 array of ECEF
coordinates, p. lla is in [degrees degrees meters]. p is in meters. The
default ellipsoid planet is WGS84.

p = lla2ecef(lla, model) is an alternate method for converting the
coordinates for a specific ellipsoid planet. Currently only 'WGS84' is
supported for model.

p = lla2ecef(lla, f, Re) is another alternate method for converting
the coordinates for a custom ellipsoid planet defined by flattening, f,
and the equatorial radius, Re, in meters.

Examples Determine ECEF coordinates at a latitude, longitude, and altitude:

p = lla2ecef([0 45 1000])

p =

1.0e+006 *

4.5107 4.5107 0

Determine ECEF coordinates at multiple latitudes, longitudes, and
altitudes, specifying WGS84 ellipsoid model:

p = lla2ecef([0 45 1000; 45 90 2000], 'WGS84')

p =

4-101

lla2ecef

1.0e+006 *

4.5107 4.5107 0
0.0000 4.5190 4.4888

Determine ECEF coordinates at multiple latitudes, longitudes, and
altitudes, specifying custom ellipsoid model:

f = 1/196.877360;
Re = 3397000;
p = lla2ecef([0 45 1000; 45 90 2000], f, Re)

p =

1.0e+006 *

2.4027 2.4027 0
0.0000 2.4096 2.3852

See Also ecef2lla, geoc2geod, geod2geoc

4-102

machnumber

Purpose Compute Mach number using velocity and speed of sound

Syntax mach = machnumber(v, a)

Description mach = machnumber(v, a) computes m Mach numbers, mach, from an
m-by-3 array of velocities, v, and an array of m speeds of sound, a. v and
a must have the same length units.

Examples Determine the Mach number for velocity and speed of sound in feet
per second:

mach = machnumber([84.3905 33.7562 10.1269], 1116.4505)

mach =

0.0819

Determine the Mach number for velocity and speed of sound in meters
per second:

mach = machnumber([25.7222 10.2889 3.0867], [340.2941 295.0696])

mach =

0.0819 0.0945

Determine the Mach number for velocity and speed of sound in knots:

mach = machnumber([50 20 6; 5 0.5 2], [661.4789 573.5694])

mach =

0.0819
0.0094

4-103

machnumber

See Also airspeed, alphabeta, dpressure

4-104

mjuliandate

Purpose Calculate modified Julian date

Syntax mjd = mjuliandate(v)
mjd = mjuliandate(s,f)
mjd = mjuliandate(y,mo,d)
mjd = mjuliandate([y,mo,d])
mjd = mjuliandate(y,mo,d,h,mi,s)
mjd = mjuliandate([y,mo,d,h,mi,s])

Description mjd = mjuliandate(v) converts one or more date vectors, v, into
modified Julian date, mjd. Input v can be an m-by-6 or m-by-3 matrix
containing m full or partial date vectors, respectively. mjuliandate
returns a column vector of m modified Julian dates. Modified Julian
dates begin at midnight rather than noon and have the first two digits
of the corresponding Julian date removed.

A date vector contains six elements, specifying year, month, day,
hour, minute, and second. A partial date vector has three elements,
specifying year, month, and day. Each element of v must be a positive
double-precision number.

mjd = mjuliandate(s,f) converts one or more date strings, s,
into modified Julian date, mjd, using format string f. s can be a
character array where each row corresponds to one date string, or a
one-dimensional cell array of strings. mjuliandate returns a column
vector of m modified Julian dates, where m is the number of strings in s.

All of the date strings in s must have the same format f, which must
be composed of date format symbols listed in the datestr function
reference page. Formats containing the letter Q are not accepted by
mjuliandate.

Certain formats may not contain enough information to compute a date
number. In those cases, hours, minutes, and seconds default to 0, days
default to 1, months default to January, and years default to the current
year. Date strings with two-character years are interpreted to be within
the 100 years centered around the current year.

4-105

mjuliandate

mjd = mjuliandate(y,mo,d) and mjd = mjuliandate([y,mo,d])
return the decimal year for corresponding elements of the y,mo,d
(year,month,day) arrays. y, mo, and d must be arrays of the same size
(or any of them can be a scalar).

mjd = mjuliandate(y,mo,d,h,mi,s) and mjd =
mjuliandate([y,mo,d,h,mi,s]) return the modified Julian
dates for corresponding elements of the y,mo,d,h,mi,s
(year,month,day,hour,minute,second) arrays. The six arguments must
be arrays of the same size (or any of them can be a scalar).

Examples Calculate the modified Julian date for May 24, 2005:

mjd = mjuliandate('24-May-2005','dd-mmm-yyyy')

mjd =

53514

Calculate the modified Julian date for December 19, 2006:

mjd = mjuliandate(2006,12,19)

mjd =

54088

Calculate the modified Julian date for October 10, 2004, at 12:21:00
p.m.:

mjd = mjuliandate(2004,10,10,12,21,0)

mjd =

5.3289e+004

4-106

mjuliandate

Assumptions
and
Limitations

This function is valid for all common era (CE) dates in the Gregorian
calendar.

The calculation of modified Julian date does not take into account leap
seconds.

See Also decyear, juliandate, leapyear

4-107

play

Purpose Animate FlightGear flight simulator using given position/angle
timeseries

Syntax play(h)

Description play(h) animates FlightGear flight simulator using specified
timeseries data in h. The timeseries data can be set in h by using the
property 'TimeseriesSource'.

The timeseries data, stored in the property 'TimeseriesSource', is
interpreted according to the 'TimeseriesSourceType' property, which
can be one of:

'Timeseries' MATLAB timeseries data with 6
values per time:

lat lon alt phi theta psi

The values are resampled.

'StructureWithTime' Simulink struct with time (Simulink
root outport logging 'Structure with
time'):

• signals(1).values: lat lon
alt

• signals(2).values: phi theta
psi

Signals are linearly interpolated vs.
time using interp1.

'Array6DoF' A double precision array in n rows and
7 columns for 6-DoF data: time lat
lon alt phi theta psi. If a double
precision array of 8 or more columns
is in 'TimeseriesSource', the first 7
columns are used as 6-DoF data.

4-108

play

'Array3DoF' A double precision array in n rows
and 4 columns for 3-DoF data: time
lat alt theta. If a double precision
array of 5 or more columns is in
'TimeseriesSource', the first 4
columns are used as 3-DoF data.

'Custom' Position and angle data is retrieved
from 'TimeseriesSource'
by the currently registered
'TimeseriesReadFcn'.

The time advancement algorithm used by play is based on animation
frames counted by ticks:

ticks = ticks + 1;
time = tstart + ticks*FramesPerSecond*TimeScaling;

where

TimeScaling Specify the seconds of animation data
per second of wall-clock time.

FramesPerSecond Specify the number of frames
per second used to animate the
'TimeseriesSource'.

For default 'TimeseriesReadFcn' methods, the last frame played is
the last time value.

Note Time is in seconds, position values are in the same units
as the geometry model to be used by FlightGear (see the property
'GeometryModelName'), and all angles are in radians. A possible result
of using incorrect units is the early termination of the FlightGear flight
simulator.

4-109

play

Examples Animate FlightGear flight simulator using the given 'Array3DoF'
position/angle timeseries data:

data = [86.2667 -2.13757034184404 7050.896596 -0.135186746141248;...

87.2833 -2.13753906554384 6872.545051 -0.117321084678936;...

88.2583 -2.13751089592972 6719.405713 -0.145815609299676;...

89.275 -2.13747984652232 6550.117118 -0.150635248762596;...

90.2667 -2.13744993157894 6385.05883 -0.143124782831999;...

91.275 -2.13742019116849 6220.358163 -0.147946202530756;...

92.275 -2.13739055547779 6056.906647 -0.167529704309343;...

93.2667 -2.13736104196014 5892.356118 -0.152547361677911;...

94.2583 -2.13733161570895 5728.201718 -0.161979312941906;...

95.2583 -2.13730231163081 5562.923808 -0.122276929636682;...

96.2583 -2.13727405475022 5406.736322 -0.160421658944379;...

97.2667 -2.1372440001805 5239.138477 -0.150591353731908;...

98.2583 -2.13721598764601 5082.78798 -0.147737722951605];

h = fganimation

h.TimeseriesSource = data

h.TimeseriesSourceType = 'Array3DoF'

play(h)

See Also fganimation, GenerateRunScript

4-110

quat2dcm

Purpose Convert quaternion to direction cosine matrix

Syntax n = quat2dcm(q)

Description n = quat2dcm(q) calculates the direction cosine matrix, n, for a given
quaternion, q. Input q is an m-by-4 matrix containing m quaternions. n
returns a 3-by-3-by-m matrix of direction cosine matrices. The direction
cosine matrix performs the coordinate transformation of a vector in
inertial axes to a vector in body axes. Each element of q must be a real
number. Additionally, q has its scalar number as the first column.

Examples Determine the direction cosine matrix from q = [1 0 1 0]:

dcm = quat2dcm([1 0 1 0])

dcm =

0 0 -1.0000
0 1.0000 0

1.0000 0 0

Determine the direction cosine matrices from multiple quaternions:

q = [1 0 1 0; 1 0.5 0.3 0.1];
dcm = quat2dcm(q)

dcm(:,:,1) =

0 0 -1.0000
0 1.0000 0

1.0000 0 0

dcm(:,:,2) =

4-111

quat2dcm

0.8519 0.3704 -0.3704
0.0741 0.6148 0.7852
0.5185 -0.6963 0.4963

See Also angle2dcm, dcm2angle, dcm2quat, euler2quat, quat2euler,
quatrotate

4-112

quat2euler

Purpose Convert quaternion to Euler angles

Syntax n = quat2euler(q)

Description n = quat2euler(q) calculates the Euler angles, n, for a given
quaternion, q. Input q is an m-by-4 matrix containing m quaternions. n
returns an m-by-3 matrix of Euler angles. Each element of q must be a
real number. Additionally, q has its scalar number as the first column.
Euler angles are output in radians.

Examples Determine the Euler angles from q = [1 0 1 0]:

ea = quat2euler([1 0 1 0])

ea =

0 1.5708 0

Determine the Euler angles from multiple quaternions:

q = [1 0 1 0; 1 0.5 0.3 0.1];
ea = quat2euler(q)

ea =

0 1.5708 0
1.0071 0.3794 0.4101

See Also angle2dcm, dcm2angle, dcm2quat, euler2quat, quat2dcm

4-113

quatconj

Purpose Calculate conjugate of quaternion

Syntax n = quatconj(q)

Description n = quatconj(q) calculates the conjugate, n, for a given quaternion,
q. Input q is an m-by-4 matrix containing m quaternions. n returns an
m-by-4 matrix of conjugates. Each element of q must be a real number.
Additionally, q has its scalar number as the first column.

Examples Determine the conjugate of q = [1 0 1 0]:

conj = quatconj([1 0 1 0])

conj =

1 0 -1 0

See Also quatdivide, quatinv, quatmod, quatmultiply, quatnorm,
quatnormalize, quatrotate

4-114

quatdivide

Purpose Divide quaternion by another quaternion

Syntax n = quatdivide(q,r)

Description n = quatdivide(q,r) calculates the result of quaternion division, n,
for two given quaternions, q and r. Inputs q and r can each be either an
m-by-4 matrix containing m quaternions, or a single 1-by-4 quaternion.
n returns an m-by-4 matrix of quaternion quotients. Each element of q
and r must be a real number. Additionally, q and r have their scalar
number as the first column.

Examples Determine the division of two 1-by-4 quaternions:

q = [1 0 1 0];
r = [1 0.5 0.5 0.75];
d = quatdivide(q, r)

d =

0.7273 0.1212 0.2424 -0.6061

Determine the division of a 2-by-4 quaternion by a 1-by-4 quaternion:

q = [1 0 1 0; 2 1 0.1 0.1];
r = [1 0.5 0.5 0.75];
d = quatdivide(q, r)

d =

0.7273 0.1212 0.2424 -0.6061
1.2727 0.0121 -0.7758 -0.4606

See Also quatconj, quatinv, quatmod, quatmultiply, quatnorm,
quatnormalize, quatrotate

4-115

quatinv

Purpose Calculate inverse of quaternion

Syntax n = quatinv(q)

Description n = quatinv(q) calculates the inverse, n, for a given quaternion, q.
Input q is an m-by-4 matrix containing m quaternions. n returns an
m-by-4 matrix of inverses. Each element of q must be a real number.
Additionally, q has its scalar number as the first column.

Examples Determine the inverse of q = [1 0 1 0]:

qinv = quatinv([1 0 1 0])

qinv =

0.5000 0 -0.5000 0

See Also quatconj, quatdivide, quatmod, quatmultiply, quatnorm,
quatnormalize, quatrotate

4-116

quatmod

Purpose Calculate modulus of quaternion

Syntax n = quatmod(q)

Description n = quatmod(q) calculates the modulus, n, for a given quaternion,
q. Input q is an m-by-4 matrix containing m quaternions. n returns a
column vector of m moduli. Each element of q must be a real number.
Additionally, q has its scalar number as the first column.

Examples Determine the modulus of q = [1 0 0 0]:

mod = quatmod([1 0 0 0])

mod =

1

See Also quatconj, quatdivide, quatinv, quatmultiply, quatnorm,
quatnormalize, quatrotate

4-117

quatmultiply

Purpose Calculate product of two quaternions

Syntax n = quatmultiply(q,r)

Description n = quatmultiply(q,r) calculates the quaternion product, n, for
two given quaternions, q and r. Inputs q and r can each be either an
m-by-4 matrix containing m quaternions, or a single 1-by-4 quaternion.
n returns an m-by-4 matrix of quaternion products. Each element of q
and r must be a real number. Additionally, q and r have their scalar
number as the first column.

Note Quaternion multiplication is not commutative.

Examples Determine the product of two 1-by-4 quaternions:

q = [1 0 1 0];
r = [1 0.5 0.5 0.75];
mult = quatmultiply(q, r)

mult =

0.5000 1.2500 1.5000 0.2500

Determine the product of a 1-by-4 quaternion with itself:

q = [1 0 1 0];
mult = quatmultiply(q)

mult =

0 0 2 0

4-118

quatmultiply

Determine the product of 1-by-4 and 2-by-4 quaternions:

q = [1 0 1 0];
r = [1 0.5 0.5 0.75; 2 1 0.1 0.1];
mult = quatmultiply(q, r)

mult =

0.5000 1.2500 1.5000 0.2500
1.9000 1.1000 2.1000 -0.9000

See Also quatconj, quatdivide, quatinv, quatmod, quatnorm, quatnormalize,
quatrotate

4-119

quatnorm

Purpose Calculate norm of quaternion

Syntax n = quatnorm(q)

Description n = quatnorm(q) calculates the norm, n, for a given quaternion, q.
Input q is an m-by-4 matrix containing m quaternions. n returns a
column vector of m norms. Each element of q must be a real number.
Additionally, q has its scalar number as the first column.

Examples Determine the norm of q = [1 0 0 0]:

norm = quatnorm([1 0 0 0])

norm =

1

See Also quatconj, quatdivide, quatinv, quatmod, quatmultiply,
quatnormalize, quatrotate

4-120

quatnormalize

Purpose Normalize quaternion

Syntax n = quatnormalize(q)

Description n = quatnormalize(q) calculates the normalized quaternion, n,
for a given quaternion, q. Input q is an m-by-4 matrix containing m
quaternions. n returns an m-by-4 matrix of normalized quaternions.
Each element of q must be a real number. Additionally, q has its scalar
number as the first column.

Examples Normalize q = [1 0 1 0]:

normal = quatnormalize([1 0 1 0])

normal =

0.7071 0 0.7071 0

See Also quatconj, quatdivide, quatinv, quatmod, quatmultiply, quatnorm,
quatrotate

4-121

quatrotate

Purpose Rotate vector by quaternion

Syntax n = quatrotate(q,r)

Description n = quatrotate(q,r) calculates the rotated vector, n, for a quaternion,
q, and a vector, r. q is either an m-by-4 matrix containing m quaternions,
or a single 1-by-4 quaternion. r is either an m-by-3 matrix, or a single
1-by-3 vector. n returns an m-by-3 matrix of rotated vectors. Each
element of q and r must be a real number. Additionally, q has its scalar
number as the first column.

Examples Rotate a 1-by-3 vector by a 1-by-4 quaternion:

q = [1 0 1 0];
r = [1 1 1];
n = quatrotate(q, r)

n =

-1.0000 1.0000 1.0000

Rotate a 1-by-3 vector by a 2-by-4 quaternion:

q = [1 0 1 0; 1 0.5 0.3 0.1];
r = [1 1 1];
n = quatrotate(q, r)

n =

-1.0000 1.0000 1.0000
0.8519 1.4741 0.3185

Rotate a 2-by-3 vector by a 1-by-4 quaternion:

q = [1 0 1 0];
r = [1 1 1; 2 3 4];

4-122

quatrotate

n = quatrotate(q, r)

n =

-1.0000 1.0000 1.0000
-4.0000 3.0000 2.0000

Rotate a 2-by-3 vector by a 2-by-4 quaternion:

q = [1 0 1 0; 1 0.5 0.3 0.1];
r = [1 1 1; 2 3 4];
n = quatrotate(q, r)

n =

-1.0000 1.0000 1.0000
1.3333 5.1333 0.9333

See Also quatconj, quatinv, quatmod, quatmultiply, quatnorm, quatnormalize

4-123

rrdelta

Purpose Compute relative pressure ratio

Syntax d = rrdelta(p0, mach, g)

Description d = rrdelta(p0, mach, g) computes m pressure relative ratios, d,
from m static pressures, p0, m Mach numbers, mach, and m specific heat
ratios, g. p0 must be in pascals.

Examples Determine the relative pressure ratio for three pressures:

delta = rrdelta([101325 22632.0672 4328.1393], 0.5, 1.4)

delta =

1.1862 0.2650 0.0507

Determine the relative pressure ratio for three pressures and three
different heat ratios:

delta = rrdelta([101325 22632.0672 4328.1393], 0.5, [1.4 1.35 1.4])

delta =

1.1862 0.2635 0.0507

Determine the relative pressure ratio for three pressures at three
different conditions:

delta = rrdelta([101325 22632.0672 4328.1393], [0.5 1 2], [1.4 1.35 1.4])

delta =

1.1862 0.4161 0.3342

4-124

rrdelta

Assumptions
and
Limitations

For cases in which total pressure ratio is desired (Mach number is
nonzero), the total pressures are calculated assuming perfect gas
(with constant molecular weight, constant pressure specific heat, and
constant specific heat ratio) and dry air.

References Aeronautical Vestpocket Handbook, United Technologies Pratt &
Whitney, August, 1986

See Also rrsigma, rrtheta

4-125

rrsigma

Purpose Compute relative density ratio

Syntax s = rrsigma(rho, mach, g)

Description s = rrsigma(rho, mach, g) computes m density relative ratios, s,
from m static densities, rho, m Mach numbers, mach, and m specific heat
ratios, g. rho must be in kilograms per meter cubed.

Examples Determine the relative density ratio for three densities:

sigma = rrsigma([1.225 0.3639 0.0953], 0.5, 1.4)

sigma =

1.1297 0.3356 0.0879

Determine the relative density ratio for three densities and three
different heat ratios:

sigma = rrsigma([1.225 0.3639 0.0953], 0.5, [1.4 1.35 1.4])

sigma =

1.1297 0.3357 0.0879

Determine the relative density ratio for three densities at three
different conditions:

sigma = rrsigma([1.225 0.3639 0.0953], [0.5 1 2], [1.4 1.35 1.4])

sigma =

1.1297 0.4709 0.3382

4-126

rrsigma

Assumptions
and
Limitations

For cases in which total density ratio is desired (Mach number is
nonzero), the total density is calculated assuming perfect gas (with
constant molecular weight, constant pressure specific heat, and
constant specific heat ratio) and dry air.

References Aeronautical Vestpocket Handbook, United Technologies Pratt &
Whitney, August, 1986

See Also rrdelta, rrtheta

4-127

rrtheta

Purpose Compute relative temperature ratio

Syntax th = rrtheta(t0, mach, g)

Description th = rrtheta(t0, mach, g) computes m temperature relative ratios,
th, from m static temperatures, t0, m Mach numbers, mach, and m specific
heat ratios, g. t0 must be in kelvin.

Examples Determine the relative temperature ratio for three temperatures:

th = rrtheta([273.15 310.9278 373.15], 0.5, 1.4)

th =

0.9953 1.1330 1.3597

Determine the relative temperature ratio for three temperatures and
three different heat ratios:

th = rrtheta([273.15 310.9278 373.15], 0.5, [1.4 1.35 1.4])

th =

0.9953 1.1263 1.3597

Determine the relative temperature ratio for three temperatures at
three different conditions:

th = rrtheta([273.15 310.9278 373.15], [0.5 1 2], [1.4 1.35 1.4])

th =

0.9953 1.2679 2.3310

4-128

rrtheta

Assumptions
and
Limitations

For cases in which total temperature ratio is desired (Mach number
is nonzero), the total temperature is calculated assuming perfect gas
(with constant molecular weight, constant pressure specific heat, and
constant specific heat ratio) and dry air.

References Aeronautical Vestpocket Handbook, United Technologies Pratt &
Whitney, August, 1986

See Also rrdelta, rrsigma

4-129

wrldmagm

Purpose Use World Magnetic Model

Syntax [xyz, h, dec, dip, f] = wrldmagm(height, lat, lon, dyear)
[xyz, h, dec, dip, f] = wrldmagm(height, lat, lon, dyear,

'2005')
[xyz, h, dec, dip, f] = wrldmagm(height, lat, lon, dyear,

'2000')

Description [xyz, h, dec, dip, f] = wrldmagm(height, lat, lon,
dyear)calculates the Earth’s magnetic field at a specific location and
time using the World Magnetic Model (WMM). The default WMM is
WMM-2005, which is valid from January 1, 2005, until December 31,
2009.

Inputs required by wrldmagm are:

height A scalar value, in meters

lat A scalar geodetic latitude, in degrees, where
north latitude is positive, and south latitude is
negative

lon A scalar geodetic longitude, in degrees, where
east longitude is positive, and west longitude
is negative

dyear A scalar decimal year. Decimal year is the
desired year in a decimal format to include any
fraction of the year that has already passed.

Outputs calculated for the Earth’s magnetic field include:

xyz Magnetic field vector in nanotesla (nT)

h Horizontal intensity in nanotesla (nT)

dec Declination in degrees

4-130

wrldmagm

dip Inclination in degrees

f Total intensity in nanotesla (nT)

[xyz, h, dec, dip, f] = wrldmagm(height, lat, lon, dyear,
'2005') is an alternate method for calling WMM-2005, or 2005 epoch.

[xyz, h, dec, dip, f] = wrldmagm(height, lat, lon, dyear,
'2000') is the method for calling WMM-2000, or 2000 epoch.

Examples Calculate the magnetic model 1000 meters over Natick, Massachusetts
on July 4, 2005, using WMM-2005:

[XYZ, H, DEC, DIP, F] = wrldmagm(1000, 42.283, -71.35, 2005.5068)

XYZ =

1.0e+004 *

1.8976

-0.5167

4.9555

H =

1.9667e+004

DEC =

-15.2324

DIP =

4-131

wrldmagm

68.3530

F =

5.3315e+004

Assumptions
and
Limitations

The WMM specification produces data that is reliable five years after
the epoch of the model, which begins January 1 of the model year
selected. The WMM specification describes only the long-wavelength
spatial magnetic fluctuations due to the Earth’s core. Intermediate and
short-wavelength fluctuations, contributed from the crustal field (the
mantle and crust), are not included. Also, the substantial fluctuations of
the geomagnetic field, which occur constantly during magnetic storms
and almost constantly in the disturbance field (auroral zones), are not
included.

References http://www.ngdc.noaa.gov/seg/WMM/DoDWMM.shtml

“NOAA Technical Report: The US/UK World Magnetic Model for
2005–2010”

See Also decyear

4-132

http://www.ngdc.noaa.gov/seg/WMM/DoDWMM.shtml

Index

IndexA
Aerospace Toolbox

3-D flight data playback 2-26
about 1-2
flight data file access 2-14

airspeed function 4-2
alphabeta function 4-3
angle2dcm function 4-5
atmoscoesa function 4-7
atmosisa function 4-10
atmoslapse function 4-13
atmosnonstd function 4-16
atmospalt function 4-21

C
convacc function 4-23
convang function 4-24
convangacc function 4-25
convangvel function 4-26
convdensity function 4-27
convforce function 4-28
convlength function 4-29
convmass function 4-30
convpres function 4-31
convtemp function 4-32
convvel function 4-33
correctairspeed function 4-34

D
datcomimport function 4-36
dcm2alphabeta function 4-59
dcm2angle function 4-61
dcm2latlon function 4-64
dcm2quat function 4-66
dcmbody2wind function 4-67
dcmecef2ned function 4-69
decyear function 4-71
dpressure function 4-73

E
ecef2lla function 4-75
euler2quat function 4-77

F
fganimation function 4-78
FlightGear

flight simulator overview 2-26
installing 2-30
obtaining 2-27

functions
airspeed 4-2
alphabeta 4-3
angle2dcm 4-5
atmoscoesa 4-7
atmosisa 4-10
atmoslapse 4-13
atmosnonstd 4-16
atmospalt 4-21
convacc 4-23
convang 4-24
convangacc 4-25
convangvel 4-26
convdensity 4-27
convforce 4-28
convlength 4-29
convmass 4-30
convpres 4-31
convtemp 4-32
convvel 4-33
correctairspeed 4-34
datcomimport 4-36
dcm2alphabeta 4-59
dcm2angle 4-61
dcm2latlon 4-64
dcm2quat 4-66
dcmbody2wind 4-67
dcmecef2ned 4-69
decyear 4-71

Index-1

Index

dpressure 4-73
ecef2lla 4-75
euler2quat 4-77
fganimation 4-78
GenerateRunScript 4-82
geoc2geod 4-84
geocradius 4-86
geod2geoc 4-88
gravitywgs84 4-90
juliandate 4-98
leapyear 4-100
lla2ecef 4-101
machnumber 4-103
mjuliandate 4-105
play 4-108
quat2dcm 4-111
quat2euler 4-113
quatconj 4-114
quatdivide 4-115
quatinv 4-116
quatmod 4-117
quatmultiply 4-118
quatnorm 4-120
quatnormalize 4-121
quatrotate 4-122
rrdelta 4-124
rrsigma 4-126
rrtheta 4-128
wrldmagm 4-130

G
GenerateRunScript function 4-82
geoc2geod function 4-84
geocradius function 4-86
geod2geoc function 4-88
gravitywgs84 function 4-90

J
juliandate function 4-98

L
leapyear function 4-100
lla2ecef function 4-101

M
machnumber function 4-103
mjuliandate function 4-105

P
play function 4-108

Q
quat2dcm function 4-111
quat2euler function 4-113
quatconj function 4-114
quatdivide function 4-115
quatinv function 4-116
quatmod function 4-117
quatmultiply function 4-118
quatnorm function 4-120
quatnormalize function 4-121
quatrotate function 4-122

R
rrdelta function 4-124
rrsigma function 4-126
rrtheta function 4-128

W
wrldmagm function 4-130

Index-2

	toc
	Getting Started
	What Is the Aerospace Toolbox?
	Related Products
	Getting Online Help
	Exploring the Toolbox
	Using the MATLAB Help System for Documentation and Demos

	Using the Aerospace Toolbox
	Defining Coordinate Systems
	Fundamental Coordinate System Concepts
	Definitions
	Approximations
	Motion with Respect to Other Planets

	Coordinate Systems for Modeling
	Body Coordinates
	Wind Coordinates

	Coordinate Systems for Navigation
	Geocentric and Geodetic Latitudes
	NED Coordinates
	ECI Coordinates
	ECEF Coordinates

	Coordinate Systems for Display
	References

	Defining Aerospace Units
	Importing Digital DATCOM Data
	Example of a USAF Digital DATCOM File
	Importing Data from DATCOM Files
	Examining Imported DATCOM Data
	Filling in Missing DATCOM Data
	Plotting Aerodynamic Coefficients
	Plotting Lift Curve Moments
	Plotting Drag Polar Moments
	Plotting Pitching Moments

	3-D Flight Data Playback
	Introducing the Flight Simulator Interface
	About the FlightGear Interface
	Obtaining FlightGear
	Configuring Your Computer for FlightGear
	Installing and Starting FlightGear

	Working with the Flight Simulator Interface
	Importing the Aircraft Geometry into FlightGear
	Running the Demo
	Modifying the FlightGearAnimation Object Properties
	Generating the Run Script
	Starting the FlightGear Flight Simulator
	Playing Back the Flight Trajectory

	Functions — By Category
	Axes Transformations
	Environment
	File Reading
	FlightGear Animation
	Flight Parameters
	Quaternion Math
	Time
	Unit Conversion

	Functions — Alphabetical List
	Index

